CLASS NOTES -CHAPTER 9

SSLC Mathematics Quadratic Equations

YAKUB KOYYUR, GANESH SHETTIGAR

CHAPTER -9

QUADRATIC EQUATIONS

> Standard form of Quadratic equations:

 $\mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c} = \mathbf{0}$

(a,b,c Real numbers and $a \neq 0$)

> Pure quadratic equations: $ax^2 + c = 0$

- Adfected quadratic equations: ax² + bx + c = 0 (a,b,c Real numbers and a &b ≠ 0)
- > Methods to solve quadratic equations:
- Factorisation Method
- Completing the square method
- Formula method
- Graphical method

> The roots of quadratic equation $ax^2 + bx + c = 0$

$$X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

> The sum of the roots quadratic equation.

$$m+n=\frac{-b}{a}$$

> The product of the roots of quadratic equation.

 $mn = \frac{c}{a}$

If m' and n are the roots of quadratic equation, then the standard form of the equation is

$$\mathbf{x}^2 - (\mathbf{m} + \mathbf{n})\mathbf{x} + \mathbf{m}\mathbf{n} = \mathbf{0}$$

> The discriminant of the quadratic equation

$$\Delta = \mathbf{b}^2 - 4\mathbf{a}\mathbf{c}$$

Discriminant	Nature of roots
$\Delta = 0$	Real and equal
$\Delta > 0$	Real and distinct
$\Delta < 0$	No real roots (imaginary roots)

> The graph of the form $y = x^2$ is called:

Exercise 9.1

1. Check whether the following are quadratic equations :

i.
$$x^2 - x = 0$$

The highest degree of the variable is 2

 \therefore The given equation is a quadratic equation

ii.
$$x^2 = 8$$

The highest degree of the variable is 2

iii.
$$x^2 + \frac{1}{2}x = 0$$

 $x^2 + \frac{1}{2}x = 0 \Rightarrow \frac{2x^2 + x}{2} = 0 \Rightarrow 2x^2 + x = 0$ The highest degree of the variable is 2

	\therefore The given equation is a quadratic equation
iv.	3x - 10 = 0 The highest degree of the variable is 1 \therefore The given equation is not a quadratic equation.
v.	$x^{2} - \frac{29}{4}x + 5 = 0$ $x^{2} - \frac{29}{4}x + 5 = 0 \Rightarrow \frac{4x^{2} - 29x + 20}{4} = 0 \Rightarrow 4x^{2} - 29x + 20 = 0$
	The highest degree of the variable is 2 ∴ The given equation is a quadratic equation.
vi.	$5 - 6x = \frac{2}{5}x^{2}$ $5 - 6x = \frac{2}{5}x^{2} \Rightarrow \frac{2}{5}x^{2} + 6x - 5 = 0$ $\Rightarrow \frac{2x^{2} + 30x - 25}{5} = 0 \Rightarrow 2x^{2} + 30x - 25 = 0$ The highest degree of the variable is 2 \therefore The given equation is a quadratic equation.
vii.	$\sqrt{2}x^2 + 3x = 0$ The highest degree of the variable is 2 \therefore The given equation is a quadratic equation.
viii.	$\sqrt{3}x = \frac{22}{13}$ The highest degree of the variable is 1 \therefore The given equation is not a quadratic equation.
ix.	$x^3 - 10x + 74 = 0$ The highest degree of the variable is 3 \therefore The given equation is not a quadratic equation.
x.	$x^2 - y^2$ It has two variables. \therefore The given equation is not a quadratic equation.
2	. Simplify the following equations and check whether they are quadratic equations.
i.	x(x + 6) = 0 x(x + 6) = 0

⇒ $x^2 + 6x = 0$ The highest degree of the variable is 2 ∴ The given equation is a quadratic equation.

ii.	(x-4)(2x-3) = 0 (x-4)(2x-3) = 0 $\Rightarrow x(2x-3) - 4(2x-3) = 0$ $\Rightarrow 2x^{2} - 3x - 8x + 12 = 0$ $\Rightarrow 2x^{2} - 11x + 12 = 0$ It is of the form $ax^{2} + bx + c = 0$ \therefore It is a quadratic equation.
iii.	(x + 9)(x - 9) = 0 (x + 9)(x - 9) = 0 $\Rightarrow x^{2} - 9^{2} = 0$ $\Rightarrow x^{2} - 81 = 0$ It is of the form $ax^{2} + bx + c = 0$ \therefore It is a quadratic equation.
iv.	(x + 2)(x - 7) = 5 Sol: $(x + 2)(x - 7) = 5$ $\Rightarrow x(x - 7) + 2(x - 7) = 5$ $\Rightarrow x^2 - 7x + 2x - 14 = 5$ $\Rightarrow x^2 - 5x - 14 - 5 = 0$ $\Rightarrow x^2 - 5x - 19 = 0$ It is of the form $ax^2 + bx + c = 0$ \therefore It is a quadratic equation.
v.	3x + (2x - 1)(x - 9) = 0 3x + 2x(x - 9) - 1(x - 9) $\Rightarrow 3x + 2x^{2} - 18x - x + 9$ $\Rightarrow 2x^{2} - 16x + 9 = 0$ It is of the form $ax^{2} + bx + c = 0$ \therefore It is a quadratic equation.
vi.	$(x + 1)^{2} = 2(x - 3)$ (x + 1) ² = 2(x - 3) $\Rightarrow x^{2} + 2x + 1 = 2x - 6$

	$\Rightarrow x^{2} + 2x + 1 - 2x + 6 = 0$ $\Rightarrow x^{2} + 7 = 0$ It is of the form $ax^{2} + bx + c = 0$ \therefore It is a quadratic equation.
vii.	(2x - 1)(x - 3) = (x + 5)(x - 1) (2x - 1)(x - 3) = (x + 5)(x - 1) $\Rightarrow 2x(x - 3) - 1(x - 3) = x(x - 1) + 5(x - 1)$
	$\Rightarrow 2x^{2} - 6x - x + 3 = x^{2} - x + 5x - 5$ $\Rightarrow 2x^{2} - 7x + 3 = x^{2} + 4x - 5$ $\Rightarrow 2x^{2} - 7x + 3 - x^{2} - 4x + 5 = 0$ $\Rightarrow x^{2} - 11x + 8 = 0$ It is of the form $ax^{2} + bx + c = 0$ \therefore It is a quadratic equation.
viii.	$x^{2} + 3x + 1 = (x - 2)^{2}$ $x^{2} + 3x + 1 = (x - 2)^{2}$ $\Rightarrow x^{2} + 3x + 1 = x^{2} - 4x + 4$ $\Rightarrow 3x + 1 = -4x + 4$ $\Rightarrow 3x + 1 + 4x - 4 = 0$ $\Rightarrow 7x - 3 = 0$ The highest degree of the variable is 1 $\therefore \text{ The given equation is not a quadratic equation.}$ $(x + 2)^{3} = 2x(x^{2} - 1)$ $(x + 2)^{3} = 2x(x^{2} - 1)$ $\Rightarrow x^{3} + 3(x)(2)(x + 2) + 2^{3} = 2x^{3} - 2x$ $\Rightarrow x^{3} + 6x(x + 2) + 8 = 2x^{3} - 2x$ $\Rightarrow x^{3} + 6x^{2} + 12x + 8 = 2x^{3} - 2x$ $\Rightarrow 2x^{3} - 2x - x^{3} - 6x^{2} - 12x - 8 = 0$ $\Rightarrow x^{3} - 6x^{2} - 14x - 8 = 0$ The highest degree of the variable is 3 $\therefore \text{ The given equation is not a quadratic equation.}$
iv	$x^3 - 4x^2 - x + 1 - (x - 2)^3$

ix.
$$x^3 - 4x^2 - x + 1 = (x - 2)^3$$

 $x^3 - 4x^2 - x + 1 = (x - 2)^3$
 $\Rightarrow x^3 - 4x^2 - x + 1 = x^3 - 3(x)(2)(x - 2) - 2^3$

 $\Rightarrow x^3 - 4x^2 - x + 1 = x^3 - 6x(x - 2) - 8$ $\Rightarrow x^3 - 4x^2 - x + 1 = x^3 - 6x^2 + 12x - 8$ $\Rightarrow -4x^2 - x + 1 = -6x^2 + 12x - 8$ $\Rightarrow -4x^2 - x + 1 + 6x^2 - 12x + 8 = 0$ $\Rightarrow 2x^2 - 13x + 9 = 0$ It is of the form $ax^2 + bx + c = 0$ \therefore It is a quadratic equation. 2. Represent the following in the form quadratic equations. The product of two consecutive integers is 306 i. x(x+1) = 306 $\Rightarrow x^2 + x = 306$ \Rightarrow x² + x - 306 = 0 The length of a rectangular park (in metres) is one more ii. than twice its breadth and its area is 528 $\ensuremath{m^2}$ breadth= x m length= 2x + 1 m(2x + 1)x = 528 $\Rightarrow 2x^2 + x - 528 = 0$

iii. A train travels a distance of 480 km at uniform speed. If the speed had been 8 km/hr, then it would have taken 3 hour more to cover the same distance.

time =
$$\frac{\text{distance}}{\text{speed}}$$

 $\frac{480}{x-8} - \frac{480}{x} = 3 \implies \frac{480x-480(x-8)}{x(x-8)} =$
 $\implies \frac{480x-480x+3840}{x^2-8x} = 3$
 $\implies 3840 = 3(x^2 - 8x)$
 $\implies 840 = 3x^2 - 24x$
 $\implies 3x^2 - 24x - 3840 = 0$

Excercise 9.2

1. Classify the following equations into pure and adfected quadratic equations

Sl.No	Quadratic equations	Туре	Reason
1	$x^2 = 100$	pure	Variable second degree only
2	$x^2 + 6 = 6$	pure	x ² = 0 Variable second degree only
3	p(p-3) = 1	adfected	$p^2 - 3p = 1$ Variable in both second and first degree
4	$x^2 + 3 = 2x$	adfected	$x^2 - 2x + 3 = 0$ Variable in both second and first degree
5	(x+9)(x-9) = 0	pure	x ² – 81 Variable second degree only
6	$2x^2 = 72$	pure	Variable second degree only
7	$x^{2} - x = 0$	adfected	Variable in both second and first degree
8	$7x = \frac{35}{x}$	pure	7x ² = 35 Variable second degree only
9	$x + \frac{1}{x} = 5$	adfected	$x^2 - 5x + 1 = 0$ Variable in both second and first degree
10	$4x = \frac{81}{x}$	pure	4x ² = 81 Variable second degree only
11	$(2x-5)^2 = 81$	adfected	$4x^2 - 20x - 56 = 0$ Variable in both second and first degree
12	$\frac{(x-4)^2}{18} = \frac{2}{9}$	adfected	$x^2 - 8x + 12 = 0$ Variable in both second and first degree

2. Solve the quadratic equations :

i.	$x^2 - 196 = 0$
	$x^2 - 196 = 0$
	$\Rightarrow x^2 = 196$
	$\Rightarrow x = \sqrt{196} = \pm 14$
	\Rightarrow x = 15 or x = -15
11.	$5x^2 = 625$
	$5x^2 = 625$
	$\Rightarrow x^2 = \frac{623}{5}$
	$\Rightarrow x^2 = 125$
	$\Rightarrow x = \sqrt{125} = \sqrt{25 \times 5} = \pm 5\sqrt{5}$
	$\Rightarrow x = 5\sqrt{5}$ or $x = -5\sqrt{5}$
iii.	$x^2 + 1 = 101$
	$x^2 + 1 = 101$
	$\Rightarrow x^2 = 101 - 1$
	$\Rightarrow x^2 = 100$
	$\Rightarrow x = \sqrt{100} = \pm 10$
	\Rightarrow x = 10 or x = -10
iv.	$7x = \frac{64}{7x}$
	_ 64
	$7x = \frac{7}{7x}$
	$\Rightarrow 49x^2 = 64$
	$\Rightarrow x^2 = \frac{64}{49}$
	$\Rightarrow x = \left \frac{64}{40} = \pm \frac{8}{7} \right $
	$\sqrt{49}$
	$\Rightarrow x = \frac{8}{7} \text{ or } x = -\frac{8}{7}$
v.	$(x+8)^2 - 5 = 31$
	$(x+8)^2 - 5 = 31$
	$\Rightarrow (x+8)^2 = 31+5$
	$\Rightarrow (x+8)^2 = 36$
	\Rightarrow x + 8 = $\sqrt{36}$

	\Rightarrow x + 8 = ± 6
	$\Rightarrow x = \pm 6 - 8$
	\Rightarrow x = 6 - 8 or \Rightarrow x = -6 - 8
	\Rightarrow x = -2 or \Rightarrow x = -14
vi.	$\frac{x^2}{2} - \frac{3}{4} = 7\frac{1}{4}$
	$\frac{x^2}{2} - \frac{3}{2} = 7\frac{1}{2}$
	2 4 4 $x^2 1 3$
	$\Rightarrow \frac{x}{2} = 7\frac{1}{4} + \frac{3}{4}$
	$\Rightarrow \frac{x^2}{2} = 8$
	$\Rightarrow x^2 = 16$
	$\Rightarrow x = \sqrt{16} = \pm 4$
	\Rightarrow x = 4 or \Rightarrow x = -4
vii.	$-4x^2 + 324 = 0$
	$-4x^2 + 324 = 0$
	$\Rightarrow -4x^2 = -324$
	$\Rightarrow x^2 = \frac{-324}{-4}$
	$\Rightarrow x^2 = 81$
	$\Rightarrow x = \sqrt{81} = \pm 9$
	$\Rightarrow x = 9 \text{ or } \Rightarrow x = -9$
viii.	$-37.5x^2 = -37.5$
	$-37.5x^2 = -37.5$
	$\Rightarrow x^2 = \frac{-37.5}{27.5}$
	$\Rightarrow x^2 = 1$
	$\Rightarrow x = \sqrt{1} = \pm 1$
	\Rightarrow x = 1 or \Rightarrow x = -1

3. In each of the following , determine whether the given values of 'x' is a solution of quadratic equation or not.

i.
$$x^{2} + 14x + 13 = 0$$
; $x = -1$, $x = -13$
 $x^{2} + 14x + 13 = 0$
 $x = -1$
 $\Rightarrow (-1)^{2} + 14(-1) + 13$

$$= 1 - 14 + 13$$

$$= 14 - 14 = 0$$

 $x = -13$

$$\Rightarrow (-13)^{2} + 14(-13) + 13$$

$$= 169 - 182 + 13$$

$$= 182 - 182 = 0$$

 $\therefore -1 \text{ and } -13 \text{ are the solution of the quadratic equation }$
 $x^{2} + 14x + 13 = 0$
ii. $7x^{2} - 12x = 0; x = \frac{1}{3}$
 $7x^{2} - 12x = 0; x = \frac{1}{3}$
 $\Rightarrow 7(\frac{1}{3})^{2} - 12(\frac{1}{3})$
 $= \frac{7}{9} - 4$
 $= \frac{7-36}{9} = \frac{-29}{9} \neq 0$
 $\therefore \frac{1}{3} \text{ is not a solution of the quadratic equation }$
 $7x^{2} - 12x = 0$
iii. $2m^{2} - 6m + 3 = 0; m = \frac{1}{2}$
 $2m^{2} - 6m + 3 = 0$
 $m = \frac{1}{2}$
 $\Rightarrow 2(\frac{1}{2})^{2} - 6(\frac{1}{2}) + 3$
 $= 2(\frac{1}{4}) - 3 + 3$
 $= \frac{1}{2} \neq 0$
 $\therefore \frac{1}{2} \text{ is not a soln of the quadratic equation } 2m^{2} - 6m + 3 = 0$
 $iv. \quad y^{2} + \sqrt{2}y - 4 = 0; y = 2\sqrt{2}$
 $y^{2} + \sqrt{2}y - 4 = 0$
 $y = 2\sqrt{2}$
 $\Rightarrow (2\sqrt{2})^{2} + \sqrt{2}(2\sqrt{2}) - 4$

$$= 4(2) + 2(2) - 4$$

$$= 8 + 4 - 4$$

$$= 8 \neq 0$$

$$\therefore 2\sqrt{2} \text{ is not a soln of the quadratic eqn } y^{2} + \sqrt{2}y - 4 = 0$$

$$y. \frac{2x+1}{x} = 3x ; x = 1, x = -1,$$

$$\frac{2x + 1}{x} = 3x$$

$$x = 1 \Rightarrow \frac{2(1) + 1}{1} = 3(1)$$

$$\Rightarrow \frac{3}{1} = 3$$

$$\Rightarrow 3 = 3$$

$$x = -1 \Rightarrow \frac{2(-1) + 1}{1} = 3(-1)$$

$$\Rightarrow \frac{-1}{1} = -3$$

$$\Rightarrow -1 \neq 3$$

$$\therefore 1 \text{ is a solution of the quadratic equation } \frac{2x+1}{x} = 3x$$

$$\therefore -1 \text{ is not a solution of the quadratic equation } \frac{2x+1}{x} = 3x$$

$$\therefore -1 \text{ is not a solution of the quadratic equation } \frac{2x+1}{x} = 3x$$

$$\forall i. \quad (3k + 8)(2k + 5) = 0; k = 2\frac{2}{3}, k = 2\frac{1}{2}$$

$$(3k + 8)(2k + 5) = 0; k = 2\frac{2}{3}, k = 2\frac{1}{2}$$

$$(3k + 8)(2k + 5) = 0$$

$$k = 2\frac{2}{3} \Rightarrow [3(2\frac{2}{3}) + 8][2(2\frac{2}{3}) + 5]$$

$$= [3(\frac{8}{3}) + 8][2(\frac{8}{3}) + 5]$$

$$= [16][\frac{16 + 15}{3}]$$

$$= [16][\frac{16}{3}\frac{13}{3}]$$

$$= \frac{496}{3} \neq 0$$

$$k = 2\frac{1}{2} \Rightarrow [3(2\frac{1}{2}) + 8][2(2\frac{1}{2}) + 5]$$

$$= \left[3\left(\frac{5}{2}\right) + 8\right] \left[2\left(\frac{5}{2}\right) + 5\right]$$
$$= \left[\frac{15}{2} + 8\right] \left[5 + 5\right]$$
$$= \left[\frac{15 + 16}{2}\right] \left[10\right]$$
$$= \left[\frac{31}{2}\right] \left[10\right]$$
$$= \frac{310}{2} = 155 \neq 0$$
$$\therefore 2\frac{2}{3} \text{ and } 2\frac{1}{2} \text{ are not the solution of the quadratic equation } (3k + 8)(2k + 5) = 0$$

vii. $\frac{x}{x+2} = \frac{1}{2}$; x = 2, x = 1 $\frac{x}{x+2} = \frac{1}{2}$ $x = 2 \Rightarrow \frac{2}{2+2} = \frac{1}{2}$ $\Rightarrow \frac{2}{4} = \frac{1}{2}$ $\Rightarrow \frac{1}{2} = \frac{1}{2}$ $x = 1 \Rightarrow \frac{1}{1+2} = \frac{1}{2}$ $\Rightarrow \frac{1}{2} \neq \frac{1}{2}$ \therefore 2 is a solution of the quadratic equation $\frac{x}{x+2} = \frac{1}{2}$ \therefore 1 is not a solution of the quadratic equation $\frac{x}{x+2} = \frac{1}{2}$ $6x^2 - x - 2 = 0$; $x = -\frac{1}{2}$, $x = \frac{2}{3}$ viii. Sol : $6x^2 - x - 2 = 0$ $x = -\frac{1}{2} \Rightarrow 6\left(-\frac{1}{2}\right)^2 - \left(-\frac{1}{2}\right) - 2$ $= 6\left(\frac{1}{4}\right) + \frac{1}{2} - 2$ $=\frac{3}{2}+\frac{1}{2}-2$ $=\frac{3+1-4}{2}=\frac{0}{2}=0$

$$x = \frac{2}{3} \Rightarrow 6\left(\frac{2}{3}\right)^2 - \left(\frac{2}{3}\right) - 2$$

= $6\left(\frac{4}{9}\right) - \frac{2}{3} - 2$
= $\frac{8}{3} - \frac{2}{3} - 2$
= $\frac{8-2-6}{3} = \frac{0}{3} = 0$
 $\therefore -\frac{1}{2}$ and $\frac{2}{3}$ are the soln of the quadratic eqn
 $6x^2 - x - 2 = 0$

- i. If $A = \pi r^2$, solve for r, and find the value of 'r' if A = 77 and $\pi = \frac{22}{7}$ $A = \pi r^2$ $\Rightarrow \pi r^2 = A$ $\Rightarrow r^2 = \frac{A}{\pi}$ $\Rightarrow r = \pm \sqrt{\frac{A}{\pi}}$ $\Rightarrow r = \pm \sqrt{\frac{77}{\frac{22}{7}}}$ $\Rightarrow r = \pm \sqrt{77 \times \frac{7}{22}}$ $\Rightarrow r = \pm \sqrt{7 \times \frac{7}{2}}$ $\Rightarrow r = \pm \sqrt{\frac{49}{2}} = \pm \frac{7}{\sqrt{2}}$
- ii. If $r^2 = l^2 + d^2$, solve for d, and find the value of 'd' if r = 5and l = 4 $r^2 = l^2 + d^2$ $\Rightarrow l^2 + d^2 = r^2$ $\Rightarrow d^2 = r^2 - l^2$ $\Rightarrow d = \pm \sqrt{r^2 - l^2}$ $\Rightarrow d = \pm \sqrt{5^2 - 4^2}$ $\Rightarrow d = \pm \sqrt{25 - 16}$ $\Rightarrow d = \pm \sqrt{9} = \pm 3$

- iii. If $c^2 = a^2 + b^2$, solve for b, and find the value of 'b' if a = 8and c = 17 $c^2 = a^2 + b^2$ $\Rightarrow a^2 + b^2 = c^2$ $\Rightarrow b^2 = c^2 - a^2$ $\Rightarrow b = \pm \sqrt{c^2 - a^2}$ $\Rightarrow d = \pm \sqrt{17^2 - 8^2}$ $\Rightarrow d = \pm \sqrt{289 - 64}$ $\Rightarrow d = \pm \sqrt{225} = \pm 15$
- iv. If $A = \frac{\sqrt{3}a^2}{4}$ solve for a a and find the value of 'a', if $A = 16\sqrt{3}$ $A = \frac{\sqrt{3}a^2}{4}$ $\Rightarrow \frac{\sqrt{3}a^2}{4} = A$ $\Rightarrow \sqrt{3}a^2 = 4A$ $\Rightarrow a^2 = \frac{4A}{\sqrt{3}}$ $\Rightarrow a = \pm \sqrt{\frac{4A}{\sqrt{3}}}$ $\Rightarrow a = \pm \sqrt{\frac{4 \times 16\sqrt{3}}{\sqrt{3}}}$ $\Rightarrow a = \pm \sqrt{64} = \pm 8$
- v. If $k = \frac{1}{2}mv^2$ solve for 'v' and find the value of 'v', if k = 100and m = 2 $k = \frac{1}{2}mv^2$ $\Rightarrow \frac{1}{2}mv^2 = k$ $\Rightarrow mv^2 = 2k$ $\Rightarrow v^2 = \frac{2k}{m}$

$$\Rightarrow v = \pm \sqrt{\frac{2k}{m}}$$
$$\Rightarrow v = \pm \sqrt{\frac{2 \times 100}{2}}$$
$$\Rightarrow v = \pm \sqrt{100} = \pm 10$$

-

vi. If $v^2 = u^2 + 2as$ solve for v and find the value of v if u = 0, a = 2, s = 100 $v^2 = u^2 + 2as$ $\Rightarrow v = \pm \sqrt{u^2 + 2as}$ $\Rightarrow v = \pm \sqrt{0^2 + 2 \times 2 \times 100}$ $\Rightarrow v = \pm \sqrt{0 + 400}$ $\Rightarrow v = \pm \sqrt{400} = \pm 20$

EXERCISE 9.3

Solve the quadratic equations by factorisation method :

1.
$$x^{2} + 15x + 50 = 0$$

 $x^{2} + 15x + 50 = 0$ [10 + 5 = 15,10 × 5 = 50]
 $\Rightarrow x(x + 10) + 5(x + 10) = 0$
 $\Rightarrow (x + 10)(x + 5) = 0$
 $\Rightarrow (x + 10) = 0 \text{ or } (x + 5) = 0$
 $\Rightarrow x = -10 \text{ or } x = -5$
2. $x^{2} - 3x - 10 = 0$
 $x^{2} - 3x - 10 = 0$
 $\Rightarrow x^{2} - 5x + 2x - 10 = 0$ [-5 + 2 = -3, -5 × 2 = -10]
 $\Rightarrow x(x - 5) + 2(x - 5) = 0$
 $\Rightarrow (x - 5)(x + 2) = 0$
 $\Rightarrow (x - 5) = 0 \text{ or } (x + 2) = 0$
 $\Rightarrow x = 5 \text{ or } x = -2$
3. $6 - p^{2} = p$
 $6 - p^{2} = p$
 $\Rightarrow p^{2} + p - 6 = 0$
 $\Rightarrow p^{2} + 3p - 2p - 6 = 0$ [+3 - 2 = 1,3 × -2 = -6]

 $\Rightarrow p(p+3) - 2(p+3) = 0$ $\Rightarrow (p+3)(p-2) = 0$ $\Rightarrow (p+3) = 0 \text{ or } (p-2) = 0$ $\Rightarrow p = -3 \text{ or } p = 2$

4. $2x^{2} + 15x - 12 = 0$ $2x^{2} + 15x - 12 = 0$ $\Rightarrow 2x^{2} + 8x - 3x - 12 = 0 \quad [+8 - 3 = 5, +8 \times -3 = -24]$ $\Rightarrow 2x(x + 4) - 3(x + 4) = 0$ $\Rightarrow (x + 4)(2x - 3) = 0$ $\Rightarrow (x + 4) = 0 \text{ or } (2x - 3) = 0$ $\Rightarrow x = -4 \text{ or } 2x = 3 \Rightarrow x = \frac{3}{2}$

5.
$$13m = 6(m^2 + 1)$$

 $13m = 6(m^2 + 1)$
 $\Rightarrow 13m = 6m^2 + 6$
 $\Rightarrow 6m^2 - 13m + 6 = 0$
 $\Rightarrow 6m^2 - 9m - 4m + 6 = 0$ [-9 - 4 = -13, -9 × -4 = 36]
 $\Rightarrow 3m(2m - 3) - 2(2m - 3) = 0$
 $\Rightarrow (3m - 2)(2m - 3) = 0$
 $\Rightarrow (3m - 2) = 0 \text{ or } (2m - 3) = 0$
 $\Rightarrow 3m = 2 \text{ or } 2m = 3$
 $\Rightarrow m = \frac{2}{3} \text{ or } m = \frac{3}{2}$

6.
$$100x^2 - 20x + 1 = 0$$

 $100x^2 - 20x + 1 = 0$
 $\Rightarrow 100x^2 - 10x - 10x + 1 = 0$ [-10 - 10 = -20,100 × 1 = 100]
 $\Rightarrow 10x(10x - 1) - 1(10x - 1) = 0$
 $\Rightarrow (10x - 1)(10x - 1) = 0$
 $\Rightarrow (10x - 1) = 0 \text{ or } (10x - 1) = 0$
 $\Rightarrow 10x = 1 \text{ or } 10x = 1$
 $\Rightarrow x = \frac{1}{10} \text{ or } x = \frac{1}{10}$

7. $\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$

$$\sqrt{2}x^{2} + 7x + 5\sqrt{2} = 0$$

$$\Rightarrow \sqrt{2}x^{2} + 5x + 2x + 5\sqrt{2} = 0 \qquad [+5 + 2 = 7,5 \times 2 = 10]$$

$$\Rightarrow x(\sqrt{2}x + 5) + \sqrt{2}(\sqrt{2}x + 5) = 0$$

$$\Rightarrow (x + \sqrt{2})(\sqrt{2}x + 5) = 0$$

$$\Rightarrow (x + \sqrt{2}) = 0 \text{ or } (\sqrt{2}x + 5) = 0$$

$$\Rightarrow x = -\sqrt{2} \text{ or } \sqrt{2}x = -5 \Rightarrow x = \frac{-5}{\sqrt{2}}$$

8.
$$x^{2} + 4kx + 4k^{2} = 0$$

 $x^{2} + 4kx + 4k^{2} = 0$
 $\Rightarrow x^{2} + 2kx + 2kx + 4k^{2} = 0$ [+2k + 2k = 4k, 2k × 2k = 4k²]
 $\Rightarrow x(x + 2k) + 2k(x + 2k) = 0$
 $\Rightarrow (x + 2k)(x + 2k) = 0$
 $\Rightarrow (x + 2k) = 0$ or $(x + 2k) = 0$
 $\Rightarrow x = -2k$ or $x = -2k$

9.
$$m - \frac{7}{m} = 6$$

 $m - \frac{7}{m} = 6$
 $\Rightarrow m - \frac{7}{m} = 6$
 $\Rightarrow \frac{m^2 - 7}{m} = 6$
 $\Rightarrow m^2 - 7 = 6m$
 $\Rightarrow m^2 - 6m - 7 = 0$
 $\Rightarrow m^2 - 7m + m - 7 = 0$ $[-7 + 1 = -6, -7 \times 1 = -7]$
 $\Rightarrow m(m - 7) + 1(m - 7) = 0$
 $\Rightarrow (m - 7)(m + 1) = 0$
 $\Rightarrow (m - 7) = 0 \text{ or } (m + 1) = 0$
 $\Rightarrow m = 7 \text{ or } m = -1$
10. $m - \frac{7}{m} = 6$
 $x + \frac{1}{x} = 2.5$
 $\Rightarrow x + \frac{1}{x} = \frac{5}{2}$
 $\Rightarrow \frac{x^2 + 1}{x} = \frac{5}{2}$
 $\Rightarrow 2(x^2 + 1) = 5x$
 $\Rightarrow 2x^2 + 2 = 5x$

$$\Rightarrow 2x^{2} - 5x + 2 = 0$$

$$\Rightarrow 2x^{2} - 4x - x + 2 = 0$$

$$\Rightarrow 2x(x - 2) - 1(x - 2) = 0$$

$$\Rightarrow (x - 2)(2x - 1) = 0$$

$$\Rightarrow (x - 2) = 0 \text{ or } (2x - 1) = 0$$

$$\Rightarrow x = 2 \text{ or } 2x = 1 \Rightarrow x = \frac{1}{2}$$

11. $21y^{2} = 62y + 3$
 $21y^{2} = 62y + 3 = 0$

$$21y^{2} = 62y + 3 = 0$$

$$\Rightarrow 21y^{2} - 62y - 3 = 0$$

$$-63y + y - 3 = 0 \qquad [-63 + 1 = -62, -63 \times 1 = -63]$$

$$\Rightarrow 21y(y - 3) + 1(y - 3) = 0$$

$$\Rightarrow (y - 3)(21y + 1) = 0$$

$$\Rightarrow (y - 3) = 0 \text{ or } (21y + 1) = 0$$

$$\Rightarrow y = 3 \text{ or } 21y = -1 \Rightarrow y = \frac{-1}{21}$$

$$12. \ 0.2t^{2} - 0.04t = 0.03$$

$$0.2t^{2} - 0.04t = 0.03$$

$$\Rightarrow 100(0.2t^{2} - 0.04t) = 100 \times 0.03$$

$$\Rightarrow 20t^{2} - 4t = 3$$

$$\Rightarrow 20t^{2} - 4t - 3 = 0$$

$$\Rightarrow 20t^{2} - 10t + 6t - 3 = 0 \qquad [-10 + 6 = -4, -10 \times 6 = -60]$$

$$\Rightarrow 10t(2t - 1) + 3(2t - 1) = 0$$

$$\Rightarrow (2t - 1)(10t + 3) = 0$$

$$\Rightarrow (2t - 1) = 0 \text{ or } (10t + 3) = 0$$

$$\Rightarrow 2t = 1 \text{ or } 10t = -3$$

$$\Rightarrow t = \frac{1}{2} \text{ or } t = \frac{-3}{10}$$

$$13. \ 4x^{2} + 32x + 64 = 0$$

$$4x^{2} + 32x + 64 = 0$$

$$\Rightarrow 4(x^{2} + 8x + 16) = 0$$

$$\Rightarrow x^{2} + 8x + 16 = 0$$

$$\Rightarrow x^{2} + 4x + 4x + 16 = 0 \qquad [4 + 4 = 8,4 \times 4 = 16]$$

$$\Rightarrow x(x + 4) + 4(x + 4) = 0$$

$$\Rightarrow (x + 4)(x + 4) = 0$$

$$\Rightarrow (x + 4) = 0 \text{ or } (x + 4) = 0$$

 \Rightarrow x = -4 or x = -4

14.
$$\sqrt{5x^2 + 2x} = 3\sqrt{5}$$

 $\sqrt{5x^2 + 2x} = 3\sqrt{5}$
 $\Rightarrow \sqrt{5x^2 + 2x} = 3\sqrt{5} = 0$
 $\Rightarrow \sqrt{5x^2 + 5x} - 3x - 3\sqrt{5} = 0$
 $\Rightarrow \sqrt{5x}(x + \sqrt{5}) - 3(x + \sqrt{5}) = 0$ [+5 - 3 = 2, +5 × -3 = 15]
 $\Rightarrow (x + \sqrt{5})(\sqrt{5x} - 3) = 0$
 $\Rightarrow (x + \sqrt{5})(\sqrt{5x} - 3) = 0$
 $\Rightarrow (x + \sqrt{5})(\sqrt{5x} - 3) = 0$
 $\Rightarrow (x + \sqrt{5}) = 0 \text{ or } (\sqrt{5x} - 3) = 0$
 $\Rightarrow x = -\sqrt{5} \text{ or } \sqrt{5x} = 3 \Rightarrow x = \frac{3}{\sqrt{5}}$

15.
$$\frac{x}{x+1} + \frac{x+1}{x} = \frac{34}{15}$$
$$\frac{x}{x+1} + \frac{x+1}{x} = \frac{34}{15}$$
$$\Rightarrow \frac{x^2 + (x+1)^2}{x(x+1)} = \frac{34}{15}$$
$$\Rightarrow \frac{x^2 + x^2 + 2x + 1}{x^2 + x} = \frac{34}{15}$$
$$\Rightarrow \frac{2x^2 + 2x + 1}{x^2 + x} = \frac{34}{15}$$
$$\Rightarrow 34(x^2 + x) = 15(2x^2 + 2x + 1)$$
$$\Rightarrow 34x^2 + 34x = 30x^2 + 30x + 15$$
$$\Rightarrow 34x^2 + 34x - 30x^2 - 30x - 15 = 0$$
$$\Rightarrow 4x^2 + 4x - 15 = 0$$
$$(+10 - 6 = 4, +10 \times -6 = -60]$$
$$\Rightarrow 2x(2x + 5) - 3(2x + 5) = 0$$
$$\Rightarrow (2x + 5)(2x - 3) = 0$$
$$\Rightarrow (2x + 5)(2x - 3) = 0$$
$$\Rightarrow 2x = -5 \text{ or } (2x - 3) = 0$$
$$\Rightarrow 2x = -5 \text{ or } 2x = 3$$
$$\Rightarrow x = \frac{-5}{2} \text{ or } x = \frac{3}{2}$$
$$16. \frac{x^{-1}}{x^{-2}} + \frac{x^{-3}}{x^{-4}} = 3\frac{1}{3}$$
$$\Rightarrow \frac{(x-1)(x-4)+(x-2)(x-3)}{(x-2)(x-4)} = \frac{10}{3}$$

$$\Rightarrow \frac{x^2 - 5x + 4 + x^2 - 5x + 6}{x^2 - 6x + 8} = \frac{10}{3}$$

$$\Rightarrow \frac{2x^2 - 10x + 10}{x^2 - 6x + 8} = \frac{10}{3}$$

$$\Rightarrow 10(x^2 - 6x + 8) = 3(2x^2 - 10x + 10)$$

$$\Rightarrow 10x^2 - 60x + 80 = 6x^2 - 30x + 30$$

$$\Rightarrow 10x^2 - 60x + 80 - 6x^2 + 30x - 30 = 0$$

$$\Rightarrow 4x^2 - 30x + 50 = 0$$

$$\Rightarrow 2(2x^2 - 15x + 25) = 0$$

$$\Rightarrow 2x^2 - 15x + 25 = 0$$

$$\Rightarrow 2x^2 - 10x - 5x + 25 = 0$$

$$\Rightarrow 2x(x - 5) - 5(x - 5) = 0$$

$$\Rightarrow (x - 5)(2x - 5) = 0$$

$$\Rightarrow (x - 5) = 0 \text{ or } (2x - 5) = 0$$

$$\Rightarrow x = 5 \text{ or } 2x = 5 \Rightarrow x = \frac{5}{2}$$

17.
$$a^{2}b^{2}x^{2} - (a^{2} + b^{2})x + 1 = 0$$

 $a^{2}b^{2}x^{2} - (a^{2} + b^{2})x + 1 = 0$
 $\Rightarrow a^{2}b^{2}x^{2} - a^{2}x - b^{2}x + 1 = 0$
 $\Rightarrow a^{2}x(b^{2}x - 1) - 1(b^{2}x - 1) = 0$
 $\Rightarrow (b^{2}x - 1)(a^{2}x - 1) = 0$
 $\Rightarrow (b^{2}x - 1) = 0 \text{ or}(a^{2}x - 1) = 0$
 $\Rightarrow b^{2}x = 1 \text{ or } a^{2}x = 1$
 $\Rightarrow x = \frac{1}{b^{2}} \text{ or } x = \frac{1}{a^{2}}$

18.
$$2(x + 1)^{2} - 5(x + 1) = 12$$
$$2(x + 1)^{2} - 5(x + 1) = 12$$
$$\Rightarrow 2(x^{2} + 2x + 1) - 5x - 5 = 12$$
$$\Rightarrow 2x^{2} + 4x + 2 - 5x - 5 = 12$$
$$\Rightarrow 2x^{2} - x - 3 = 12$$
$$\Rightarrow 2x^{2} - x - 3 - 12 = 0$$
$$\Rightarrow 2x^{2} - x - 15 = 0$$
$$\Rightarrow 2x^{2} - 6x + 5x - 15 = 0$$
$$\Rightarrow 2x(x - 3) + 5(x - 3) = 0$$

$$\Rightarrow (x - 3)(2x + 5) = 0
\Rightarrow (x - 3) = 0 \text{ or } (2x + 5) = 0
\Rightarrow x = 3 \text{ or } 2x = -5 \Rightarrow x = \frac{-5}{2}$$

$$19. (x - 4)^2 + 12^2 = 15^2
\Rightarrow x^2 - 8x + 16 + 144 = 225
\Rightarrow x^2 - 8x + 160 = 225
\Rightarrow x^2 - 8x + 160 - 225 = 0
\Rightarrow x^2 - 8x - 65 = 0
\Rightarrow x^2 - 13x + 5x - 65 = 0
\Rightarrow x(x - 13) + 5(x - 13) = 0
\Rightarrow (x - 13)(x + 5) = 0
\Rightarrow (x - 13) = 0 \text{ or } (x + 5) = 0
\Rightarrow x = 13 \text{ or } x = -5$$

$$19.2x - 3 = \sqrt{2x^2 - 2x + 21}
\Rightarrow (2x - 3)^2 = (\sqrt{2x^2 - 2x + 21})^2
4x^2 - 12x + 9 = 2x^2 - 2x + 21
\Rightarrow 4x^2 - 12x + 9 - 2x^2 + 2x - 21 = 0
\Rightarrow 2x^2 - 10x - 12 = 0
\Rightarrow 2(x^2 - 5x - 6) = 0
\Rightarrow x(x - 6) + 1(x - 6) = 0
\Rightarrow x(x - 6) + 1(x - 6) = 0
\Rightarrow (x - 6) = 0 \text{ or } (x + 1) = 0
\Rightarrow x = 6 \text{ or } x = -1$$

Exercise 9.4

Solve the following quadratic equations by completing the square

i.
$$4x^2 - 20x + 9 = 0$$

 $4x^2 - 20x + 9 = 0$
 $\Rightarrow 4x^2 - 20x = -9$
 $\Rightarrow 4(4x^2 - 20x) = 4 \times -9$
 $\Rightarrow 16x^2 - 80x = -36$
 $\Rightarrow 16x^2 - 80x + 100 = -36 + 100$
 $\Rightarrow (4x - 10)^2 = 64$
 $\Rightarrow 4x - 10 = \sqrt{64}$
 $\Rightarrow 4x - 10 = \pm 8$
 $\Rightarrow 4x = \pm 8 + 10$
 $\Rightarrow 4x = 8 + 10 \text{ or } 4x = -8 + 10$
 $\Rightarrow 4x = 18 \text{ or } 4x = 2$
 $\Rightarrow x = \frac{18}{4} \text{ or } x = \frac{2}{4}$
 $\Rightarrow x = \frac{9}{2} \text{ or } x = \frac{1}{2}$

$$2ab = 80x$$
$$2 \times 4x \times b = 80x$$
$$b = \frac{80x}{8x} = 10$$
$$b^{2} = 100$$

ii.
$$4x^{2} + x - 5 = 0$$

 $4x^{2} + x - 5 = 0$
 $4x^{2} + x = 5$
 $\Rightarrow 4(4x^{2} + x) = 4 \times 5$
 $\Rightarrow 16x^{2} + 4x = 20$
 $\Rightarrow 16x^{2} + 4x + \frac{1}{4} = 20 + \frac{1}{4}$
 $\Rightarrow (4x + \frac{1}{2})^{2} = \frac{81}{4}$
 $\Rightarrow 4x + \frac{1}{2} = \sqrt{\frac{81}{4}}$
 $\Rightarrow 4x + \frac{1}{2} = \pm \frac{9}{2}$
 $\Rightarrow 4x = \pm \frac{9}{2} - \frac{1}{2}$
 $\Rightarrow 4x = \pm \frac{9}{2} - \frac{1}{2}$ or $4x = -\frac{9}{2} - \frac{1}{2}$
 $\Rightarrow 4x = \frac{9-1}{2}$ or $4x = \frac{-9-1}{2}$
 $\Rightarrow 4x = \frac{8}{2}$ or $4x = \frac{-10}{2}$

 $\frac{1}{2}$

2ab = 4x	
$2 \times 4x \times b = 4x$	
$b = \frac{4x}{8x} = \frac{1}{2}$	
$b^2 = \frac{1}{4}$	

$$\Rightarrow 4x = 4 \text{ or } 4x = -5$$
$$\Rightarrow x = \frac{4}{4} \text{ or } x = \frac{-5}{4}$$
$$\Rightarrow x = 1 \text{ or } x = \frac{-5}{4}$$

iii.
$$2x^2 + 5x - 3 = 0$$

 $2x^2 + 5x - 3 = 0$
 $\Rightarrow 2x^2 + 5x = 3$
 $\Rightarrow 2(2x^2 + 5x) = 2 \times 3$
 $\Rightarrow 4x^2 + 10x + \frac{25}{4} = 6 + \frac{25}{4}$
 $\Rightarrow (2x + \frac{5}{2})^2 = \frac{49}{4}$
 $\Rightarrow 2x + \frac{5}{2} = \sqrt{\frac{49}{4}}$
 $\Rightarrow 2x + \frac{5}{2} = \pm \frac{7}{2}$
 $\Rightarrow 2x = \pm \frac{7}{2} - \frac{5}{2}$
 $\Rightarrow 2x = \pm \frac{7}{2} - \frac{5}{2}$ or $4x = -\frac{7}{2} - \frac{5}{2}$
 $\Rightarrow 2x = \frac{7-5}{2}$ or $2x = \frac{-7-5}{2}$
 $\Rightarrow 2x = \frac{2}{2}$ or $2x = \frac{-12}{2}$
 $\Rightarrow 2x = 1$ or $2x = -6$
 $\Rightarrow x = \frac{1}{2}$ or $x = -3$

iv.
$$x^2 + 16x - 9 = 0$$

 $x^2 + 16x - 9 = 0$
 $\Rightarrow x^2 + 16x = 9$
 $\Rightarrow x^2 + 16x + 64 = 9 + 64$

2ab = 10x
$2 \times 2x \times b = 10x$
$b = \frac{10x}{4x} = \frac{5}{2}$
$b^2 = \frac{25}{4}$

$$2ab = 16x$$
$$2 \times x \times b = 16x$$
$$b = \frac{16x}{2x} = 8$$
$$b^{2} = 64$$

$$\begin{array}{l} \Rightarrow (x + 8)^{2} = 73 \\ \Rightarrow x + 8 = \pm \sqrt{73} \\ \Rightarrow x = -8 \pm \sqrt{73} \\ \Rightarrow x = -8 \pm \sqrt{73} \text{ or } x = -8 - \sqrt{73} \end{array} \\ \hline x. x^{2} - 3x + 1 = 0 \\ x^{2} - 3x + 1 = 0 \\ \Rightarrow x^{2} - 3x + 1 = 0 \\ \Rightarrow x^{2} - 3x + 1 = 0 \\ \Rightarrow x^{2} - 3x + 1 = 0 \\ \Rightarrow x^{2} - 3x + 1 = 0 \\ \Rightarrow x^{2} - 3x + 1 = 0 \\ \Rightarrow x^{2} - 3x + 1 = 0 \\ \Rightarrow x^{2} - 3x + 1 = 0 \\ \Rightarrow x^{2} - 3x + 1 = 0 \\ \Rightarrow x^{2} - 3x + 1 = 0 \\ \Rightarrow x^{2} - 3x + 1 = 0 \\ \Rightarrow x^{2} - 3x + 1 = 0 \\ \Rightarrow x^{2} - 3x + 1 = 0 \\ \Rightarrow x^{2} - 3x + 1 = 0 \\ \Rightarrow x^{2} - 3x + 1 = 0 \\ \Rightarrow x^{2} - 3x + 1 = 0 \\ \Rightarrow x^{2} - 3x + 1 = 0 \\ \Rightarrow x - \frac{3}{2} + \frac{\sqrt{5}}{4} \\ \Rightarrow x = \frac{3}{2} \pm \sqrt{\frac{5}{4}} \\ \Rightarrow x = \frac{3}{2} \pm \sqrt{\frac{5}{4}} \\ \Rightarrow x = \frac{3}{2} \pm \sqrt{\frac{5}{2}} \\ \Rightarrow x = \frac{3 \pm \sqrt{5}}{2} \\ \Rightarrow x = \frac{3 \pm \sqrt{5}}{2} \text{ or } x = \frac{3 - \sqrt{5}}{2} \end{array}$$

$$\begin{array}{l} 2ab = 3t \\ 2 \times t \times b = 3x \\ b = \frac{3t}{2t} = \frac{3}{2} \\ b^{2} = \frac{9}{4} \end{array}$$

$$\begin{array}{l} 2ab = 3t \\ 2 \times t \times b = 3x \\ b = \frac{3t}{2t} = \frac{3}{2} \\ b^{2} = \frac{3}{4} \\ b = \frac{3t}{2t} = \frac{3}{2} \\ b^{2} = \frac{9}{4} \end{array}$$

$$\begin{array}{l} b = \frac{3t}{2} \pm \frac{3}{2} \\ b^{2} = \frac{9}{4} \\ b = \frac{3t}{2} \pm \frac{\sqrt{37}}{2} \\ c = \frac{3t}{2} + \frac{\sqrt{37}}{2} \\ c = \frac{3t}{4} + \frac{\sqrt{37}}{2} \\ c = \frac{9}{4} \\ c = \frac{9t}{4} \\ c = \frac{9t$$

$$\Rightarrow x^{2} + 29x = 0$$

$$\Rightarrow x^{2} + 29x + \frac{841}{4} = \frac{841}{4}$$

$$\Rightarrow \left(x + \frac{29}{2}\right)^{2} = \frac{841}{4}$$

$$\Rightarrow x + \frac{29}{2} = \pm \sqrt{\frac{841}{4}}$$

$$\Rightarrow x + \frac{29}{2} = \pm \frac{29}{2}$$

$$\Rightarrow x = -\frac{29}{2} \pm \frac{29}{2}$$

$$\Rightarrow x = -\frac{29 + 29}{2} \text{ or } x = \frac{-29 - 29}{2}$$

$$\Rightarrow x = \frac{0}{2} \text{ or } x = \frac{-58}{2}$$

$$\Rightarrow x = 0 \text{ or } x = -29$$

viii. $\frac{5x+7}{x-1} = 3x + 2$

$$\frac{5x+7}{x-1} = 3x + 2$$

$$\Rightarrow (x - 1)(3x + 2) = 5x + 7$$

$$\Rightarrow 3x^{2} - x - 2 = 5x + 7$$

 $\Rightarrow (x - 1)(3x + 2) = 5x + 7$ $\Rightarrow 3x^{2} - x - 2 = 5x + 7$ $\Rightarrow 3x^{2} - x - 2 - 5x - 7 = 0$ $\Rightarrow 3x^{2} - 6x - 9 = 0$ $\Rightarrow 3(x^{2} - 2x - 3) = 0$ $\Rightarrow x^{2} - 2x - 3 = 0$ $\Rightarrow x^{2} - 2x = 3$ $\Rightarrow x^{2} - 2x + 1 = 3 + 1$ $\Rightarrow (x - 1)^{2} = 4$ $\Rightarrow x - 1 = \sqrt{4}$ $\Rightarrow x - 1 = \sqrt{4}$ $\Rightarrow x - 1 = 2 \text{ or } x - 1 = -2$ $\Rightarrow x = 2 + 1 \text{ or } x = -2 + 1$ $\Rightarrow x = 3 \text{ or } x = -1$ ix. $a^{2}x^{2} - 3abx + 2b^{2} = 0$ $\Rightarrow a^{2}x^{2} - 3abx = -2b^{2}$

2ab = 2x $2 \times x \times b = 2x$ $b = \frac{2x}{2x} = 1$ $b^{2} = 1$

$$2ab = 3abx$$
$$2 \times ax \times b = 3abx$$
$$b = \frac{3abx}{2ax} = \frac{3b}{2}$$
$$b^2 = \frac{9b^2}{4}$$

25

$$\Rightarrow a^{2}x^{2} - 3abx + \frac{9b^{2}}{4} = -2b^{2} + \frac{9b^{2}}{4}$$

$$\Rightarrow \left(ax - \frac{3b}{2}\right)^{2} = \frac{-8b^{2} + 9b^{2}}{4}$$

$$\Rightarrow \left(ax - \frac{3b}{2}\right)^{2} = \frac{b^{2}}{4}$$

$$\Rightarrow ax - \frac{3b}{2} = \pm \sqrt{\frac{b^{2}}{4}}$$

$$\Rightarrow ax - \frac{3b}{2} = \pm \frac{b}{2}$$

$$\Rightarrow ax - \frac{3b}{2} = \pm \frac{b}{2}$$

$$\Rightarrow ax - \frac{3b}{2} = \pm \frac{b}{2}$$

$$\Rightarrow ax = \pm \frac{b}{2} + \frac{3b}{2}$$
 or $ax = -\frac{b}{2} + \frac{3b}{2}$

$$\Rightarrow ax = \pm \frac{b}{2} + \frac{3b}{2}$$
 or $ax = -\frac{b}{2} + \frac{3b}{2}$

$$\Rightarrow ax = \pm \frac{b}{2} + \frac{3b}{2}$$
 or $ax = \frac{-b+3b}{2}$

$$\Rightarrow ax = \frac{4b}{2}$$
 or $ax = \frac{2b}{2}$

$$\Rightarrow ax = 2b \text{ or } ax = b$$

$$\Rightarrow x = \frac{2b}{a} \text{ or } x = \frac{b}{a}$$

$$x. 4x^{2} + 4bx - (a^{2} - b^{2}) = 0$$

$$\Rightarrow 4x^{2} + 4bx - a^{2} + b^{2} = 0$$

$$\Rightarrow 4x^{2} + 4bx + b^{2} - a^{2} = 0$$

$$\Rightarrow 4x^{2} + 4bx + b^{2} = a^{2}$$

$$\Rightarrow (2x + b)^{2} = a^{2}$$

$$\Rightarrow 2x + b = \pm a$$

$$\Rightarrow 2x = \pm a - b$$

$$\Rightarrow x = \frac{\pm a - b}{2}$$

$$\Rightarrow x = \frac{a - b}{2} \text{ or } x = \frac{-a - b}{2}$$

Exercise 9.5

Solve the following quadratic equation by using the formula method :

1.
$$x^{2} - 4x + 2 = 0$$

 $x^{2} - 4x + 2 = 0$
 $x = x, a = 1, b = -4, c = 2$
 $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
 $x = \frac{-(-4) \pm \sqrt{(-4)^{2} - 4(1)(2)}}{2(1)}$
 $x = \frac{4 \pm \sqrt{16 - 8}}{2}$
 $x = \frac{4 \pm \sqrt{16 - 8}}{2}$
 $x = \frac{4 \pm \sqrt{8}}{2}$
 $x = \frac{4 \pm \sqrt{8}}{2}$
 $x = \frac{4 \pm \sqrt{4 \times 2}}{2}$
 $x = \frac{4 \pm 2\sqrt{2}}{2}$
 $x = \frac{2(2 \pm \sqrt{2})}{2}$
 $x = 2 \pm \sqrt{2}$
 $x = 2 \pm \sqrt{2}$ or $x = 2 - \sqrt{2}$

2.
$$x^{2} - 2x + 4 = 0$$

 $x^{2} - 2x + 4 = 0$
 $x = x, a = 1, b = -2, c = 4$
 $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
 $x = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4(1)(4)}}{2(1)}$
 $x = \frac{2 \pm \sqrt{4 - 16}}{2}$
 $x = \frac{2 \pm \sqrt{4 - 16}}{2}$
 $x = \frac{2 \pm \sqrt{-12}}{2}$
 $x = \frac{2 \pm \sqrt{4 \times -3}}{2}$
 $x = \frac{2 \pm 2\sqrt{-3}}{2}$

$$x = \frac{2(1\pm\sqrt{-3})}{2}$$

$$x = 1 \pm \sqrt{-3} \text{ or } x = 1 - \sqrt{-3}$$
3. $x^2 - 7x + 12 = 0$

$$x^2 - 7x + 12 = 0$$

$$x = x, a = 1, b = -7, c = 12$$

$$x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

$$x = \frac{-(-7)\pm\sqrt{(-7)^2 - 4(1)(12)}}{2(1)}$$

$$x = \frac{7 \pm \sqrt{1}}{2}$$

$$x = \frac{7 \pm \sqrt{1}}{2}$$

$$x = \frac{7 \pm \sqrt{1}}{2}$$

$$x = \frac{7 \pm 1}{2}$$

$$x = \frac{7 \pm 1}{2} \text{ or } x = \frac{7 - 1}{2}$$

$$x = \frac{8}{2} \text{ or } x = \frac{6}{2}$$

$$x = 4 \text{ or } x = 3$$
4. $2y^2 + 6y = 3$
 $2y = -6 \pm \sqrt{b^2 - 4ac}$
 $y = \frac{-6 \pm \sqrt{6^2 - 4(2)(-3)}}{2(2)}$
 $y = \frac{-6 \pm \sqrt{36 + 24}}{4}$
 $y = \frac{-6 \pm \sqrt{60}}{4}$

$$y = \frac{-6 \pm \sqrt{4 \times 15}}{4}$$

$$y = \frac{-6 \pm 2\sqrt{15}}{4}$$

$$y = \frac{2(-3 \pm \sqrt{15})}{4}$$

$$y = \frac{-3 \pm \sqrt{15}}{2}$$

$$y = \frac{-3 \pm \sqrt{15}}{2}$$

$$y = \frac{-3 \pm \sqrt{15}}{2}$$
or $y = \frac{-3 - \sqrt{15}}{2}$
5. $15m^2 - 11m + 2 = 0$
 $15m^2 - 11m + 2 = 0$
 $x = m, a = 15, b = -11, c = 2$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $m = \frac{-(-11) \pm \sqrt{(-11)^2 - 4(15)(2)}}{2(15)}$
 $m = \frac{11 \pm \sqrt{121 - 120}}{30}$
 $m = \frac{11 \pm \sqrt{1}}{30}$
 $m = \frac{12}{30} \text{ or } m = \frac{10}{30}$
 $m = \frac{2}{5} \text{ or } m = \frac{1}{3}$
6. $8r^2 = r + 2$
 $8r^2 = r + 2$
 $8r^2 = r + 2$
 $8r^2 = r - 2 = 0$
 $x = r, a = 8, b = -1, c = -2$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$r = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(8)(-2)}}{2(8)}$$
$$r = \frac{1 \pm \sqrt{1 + 64}}{16}$$
$$r = \frac{1 \pm \sqrt{65}}{16}$$
$$r = \frac{1 \pm \sqrt{65}}{16} \text{ or } r = \frac{1 - \sqrt{65}}{16}$$

7.
$$p = 5 - 2p^2$$

 $p = 5 - 2p^2$
 $2p^2 + p - 5 = 0$
 $x = p, a = 2, b = 1, c = -5$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $p = \frac{-1 \pm \sqrt{(1)^2 - 4(2)(-5)}}{2(2)}$
 $p = \frac{-1 \pm \sqrt{1 + 40}}{4}$
 $p = \frac{-1 \pm \sqrt{41}}{4}$
 $p = \frac{-1 \pm \sqrt{41}}{4}$ or $p = \frac{-1 - \sqrt{41}}{4}$

8.
$$(2x + 3)(3x - 2) + 2 = 0$$

 $(2x + 3)(3x - 2) + 2 = 0$
 $6x^2 + 9x - 4x - 6 + 2 = 0$
 $6x^2 + 5x - 4 = 0$
 $x = x, a = 6, b = 5, c = -4$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $x = \frac{-5 \pm \sqrt{5^2 - 4(6)(-4)}}{2(6)}$
 $x = \frac{-5 \pm \sqrt{25 + 96}}{12}$

Yakub Koyyur

 $x = \frac{-5 \pm \sqrt{121}}{12}$ $x = \frac{-5 \pm 11}{1}$ $x = \frac{-5 + 11}{12}$ or $x = \frac{-5 - 11}{12}$ $x = \frac{6}{12}$ or $x = \frac{-16}{12}$ $x = \frac{1}{2}$ or $x = \frac{-4}{2}$ 9. $4x^2 - 4ax + (a^2 - b^2) = 0$ $4x^2 - 4ax + (a^2 - b^2) = 0$ x = x, a = 4, b = -4a, $c = a^2 - b^2$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2c}$ $x = \frac{-(-4a) \pm \sqrt{(-4a)^2 - 4(4)(a^2 - b^2)}}{2(4)}$ $x = \frac{4a \pm \sqrt{16a^2 - 16a^2 + 16b^2}}{8}$ $x = \frac{4a \pm \sqrt{16b^2}}{8}$ $x = \frac{4a \pm 4b}{2}$ $x = \frac{4(a \pm b)}{a}$ $x = \frac{(a \pm b)}{2}$ $x = \frac{(a+b)}{2}$ or $x = \frac{(a-b)}{2}$ 10. $\sqrt{2x+9} = 13 - x$ $\sqrt{2x+9} = 13 - x$ $\left(\sqrt{2x+9}\right)^2 = (13-x)^2$ $\left(\sqrt{2x+9}\right)^2 = (13-x)^2$ $2x + 9 = 169 - 26x + x^2$

 $x^2 - 26x + 169 - 2x - 9 = 0$

$$x^{2} - 28x + 160 = 0$$

$$x = x, a = 1, b = -28, c = 160$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-(-28) \pm \sqrt{(-28)^{2} - 4(1)(160)}}{2(1)}$$

$$x = \frac{28 \pm \sqrt{784 - 640}}{2}$$

$$x = \frac{28 \pm \sqrt{784 - 640}}{2}$$

$$x = \frac{28 \pm 12}{2}$$

$$x = \frac{28 \pm 12}{2} \text{ or } x = \frac{28 - 12}{2}$$

$$x = \frac{40}{2} \text{ or } x = \frac{16}{2}$$

$$x = 20 \text{ or } x = 8$$
11. $a(x^{2} + 1) = x(a^{2} + 1)$
 $a(x^{2} + 1) = x(a^{2} + 1)$
 $a(x^{2} + 1) = x(a^{2} + 1)$
 $ax^{2} + a = a^{2}x + x$
 $ax^{2} + a - a^{2}x - x = 0$
 $ax^{2} - (a^{2} + 1)x + a = 0$
 $x = x, a = a, b = -(a^{2} + 1), c = a$
 $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
 $-[-(a^{2} + 1)] \pm \sqrt{[-(a^{2} + 1)]^{2} - (a^{2} + 1)]^{2}}$

$$x = x, a = a, b = -(a^{2} + 1), c = a$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-[-(a^{2} + 1)] \pm \sqrt{[-(a^{2} + 1)]^{2} - 4(a)(a)}}{2a}$$

$$x = \frac{(a^{2} + 1) \pm \sqrt{a^{4} + 2a^{2} + 1 - 4a^{2}}}{2a}$$

$$x = \frac{(a^{2} + 1) \pm \sqrt{a^{4} - 2a^{2} + 1}}{2a}$$

$$x = \frac{(a^{2} + 1) \pm \sqrt{a^{4} - 2a^{2} + 1}}{2a}$$

$$x = \frac{(a^{2} + 1) \pm \sqrt{(a^{2} - 1)^{2}}}{2a}$$

$$x = \frac{(a^{2} + 1) \pm (a^{2} - 1)}{2a}$$

$$x = \frac{(a^{2} + 1) + (a^{2} - 1)}{2a} \text{ or } x = \frac{(a^{2} + 1) - (a^{2} - 1)}{2a}$$

$$x = \frac{a^{2} + 1 + a^{2} - 1}{2a} \text{ or } x = \frac{a^{2} + 1 - a^{2} + 1}{2a}$$

$$x = \frac{a^{2} + a^{2}}{2a} \text{ or } x = \frac{1 + 1}{2a}$$

$$x = \frac{a^{2} + a^{2}}{2a} \text{ or } x = \frac{2}{2a}$$

$$x = a \text{ or } x = \frac{1}{a}$$
12. $36x^{2} - 12ax + (a^{2} - b^{2}) = 0$
 $36x^{2} - 12ax + (a^{2} - b^{2}) = 0$
 $x = x, a = 36, b = -12a, c = a^{2} - b^{2}$
 $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

$$x = \frac{-(-12a) \pm \sqrt{(-12a)^{2} - 4(36)(a^{2} - b^{2})}}{2(36)}$$

$$x = \frac{12a \pm \sqrt{144a^{2} - 144(a^{2} - b^{2})}}{72}$$
 $x = \frac{12a \pm \sqrt{144a^{2} - 144a^{2} + 144b^{2}}}{72}$
 $x = \frac{12a \pm \sqrt{144a^{2} - 144a^{2} + 144b^{2}}}{72}$
 $x = \frac{12a \pm \sqrt{144a^{2} - 144a^{2} + 144b^{2}}}{72}$
 $x = \frac{12a \pm \sqrt{144a^{2} - 144a^{2} + 144b^{2}}}{72}$
 $x = \frac{12a \pm \sqrt{144a^{2} - 144a^{2} + 144b^{2}}}{72}$
 $x = \frac{12a \pm \sqrt{144a^{2} - 144a^{2} + 144b^{2}}}{72}$
 $x = \frac{12a \pm \sqrt{144a^{2} - 144a^{2} + 144b^{2}}}{72}$
 $x = \frac{12a \pm \sqrt{144a^{2} - 144a^{2} + 144b^{2}}}{72}$
 $x = \frac{12a \pm \sqrt{144a^{2} - 144a^{2} + 144b^{2}}}{72}$
 $x = \frac{12a \pm \sqrt{144a^{2} - 144a^{2} + 144b^{2}}}{72}$
 $x = \frac{12a \pm \sqrt{144a^{2} - 144a^{2} + 144b^{2}}}{72}$
 $x = \frac{12a \pm \sqrt{144a^{2} - 144a^{2} + 144b^{2}}}{72}$
 $x = \frac{12a \pm \sqrt{144a^{2} - 144a^{2} + 144b^{2}}}{72}$
 $x = \frac{12a \pm \sqrt{144a^{2} - 144a^{2} + 144b^{2}}}{72}$
 $x = \frac{12a \pm \sqrt{144a^{2} - 144a^{2} + 144b^{2}}}{72}$
 $x = \frac{12a \pm \sqrt{144a^{2} - 144a^{2} + 144b^{2}}}{72}$
 $x = \frac{12a \pm \sqrt{144a^{2} - 144a^{2} + 144b^{2}}}{72}$
 $x = \frac{12a \pm \sqrt{14a^{2} - 14a^{2} + 14a^{2$

$$\begin{aligned} &(x-3)(x-4) + (x-2)(x-4) + (x-2)(x-3) = 0 \times (x-2)(x-3)(x-4) \\ &x^2 - 7x + 12 + x^2 - 6x + 8 + x^2 - 5x + 6 = 0 \\ &3x^2 - 18x + 26 = 0 \\ &x = x, a = 3, b = -18, c = 26 \\ &x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ &x = \frac{-(-18) \pm \sqrt{(-18)^2 - 4(3)(26)}}{2(3)} \\ &x = \frac{18 \pm \sqrt{12}}{6} \\ &x = \frac{18 \pm \sqrt{12}}{6} \\ &x = \frac{18 \pm \sqrt{12}}{6} \\ &x = \frac{18 \pm 2\sqrt{3}}{6} \\ &x = \frac{2(9 \pm \sqrt{3})}{6} \\ &x = \frac{9 \pm \sqrt{3}}{6} \\ &x = \frac{9 \pm \sqrt{3}}{3} \text{ or } x = \frac{9 - \sqrt{3}}{3} \end{aligned}$$

$$8b^{2} - 72b + 160 + 5b^{2} - 12b - 44 = 0$$

$$13b^{2} - 84b + 116 = 0$$

$$x = b, a = 13, b = -84, c = 116$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$b = \frac{-(-84) \pm \sqrt{(-84)^{2} - 4(13)(116)}}{2(13)}$$

$$b = \frac{84 \pm \sqrt{7056 - 6032}}{26}$$

$$b = \frac{84 \pm \sqrt{7056 - 6032}}{26}$$

$$b = \frac{84 \pm 32}{26}$$

$$b = \frac{116}{26} \text{ or } b = \frac{52}{26}$$

$$b = \frac{58}{13} \text{ or } b = 2$$

Excercise 9.6

A. Discuss the nature of the following equations.

i.
$$y^2 - 7y + 2 = 0$$

 $y^2 - 7y + 2 = 0$
 $a = 1, b = -7, c = 2$
 $\Delta = b^2 - 4ac$
 $\Delta = (-7)^2 - 4(1)(2)$
 $\Delta = 49 - 8$
 $\Delta = 41$
 $\Delta > 0$
 \therefore Roots are real and distinct

ii.
$$x^2 - 2x + 3 = 0$$

```
x^2 - 2x + 3 = 0
     a = 1, b = -2, c = 3
     \Delta = b^2 - 4ac
     \Delta = (-2)^2 - 4(1)(3)
     \Delta = 4 - 12
     \Delta = -8
     \Delta < 0
     ∴ Roots are imaginary ( no real roots )
iii. 2n^2 + 5n - 1 = 0
     2n^2 + 5n - 1 = 0
     a = 2, b = 5, c = -1
     \Delta = b^2 - 4ac
     \Delta = 5^2 - 4(2)(-1)
     \Delta = 25 + 8
     \Delta = 33
     \Delta > 0
     : Roots are real and distinct
 iii. a^2 + 4a + 4 = 0
      a^2 + 4a + 4 = 0
      a = 1, b = 4, c = 4
      \Delta = b^2 - 4ac
      \Delta = 4^2 - 4(1)(4)
      \Delta = 16 - 16
      \Delta = 0
     ∴ Roots are real and equal
 iv. x^2 + 3x - 4 = 0
      x^2 + 3x - 4 = 0
      a = 1, b = 3, c = -4
     \Delta = b^2 - 4ac
      \Delta = 3^2 - 4(1)(-4)
      \Delta = 9 + 16
      \Delta = 25
      \Delta > 0
```

∴ Roots are real and distinct

v. $3d^2 - 2d + 1 = 0$ $3d^2 - 2d + 1 = 0$ a = 3, b = -2, c = 1 $\Delta = b^2 - 4ac$ $\Delta = (-2)^2 - 4(3)(1)$ $\Delta = 4 - 12$ $\Delta = -8$ $\Delta < 0$ \therefore Roots are imaginary (no real roots)

```
B. For what positive values of 'm' roots of following equations are (1) equal (2) distinct (3) imaginary
```

```
i. a^2 - ma + 1 =
    a^2 - ma + 1 = 0
    a = 1, b = -m, c = 1
    \Delta = b^2 - 4ac
    \Delta = (-m)^2 - 4(1)(1)
    \Delta = m^2 - 4
    If roots are equal, then \Delta = 0
    \therefore m<sup>2</sup> - 4 = 0 \Rightarrow m<sup>2</sup> = 4 \Rightarrow m = \sqrt{4} = ±2
    If roots are distinct, then \Delta > 0
    \therefore m<sup>2</sup> - 4 > 0 \Rightarrow m<sup>2</sup> > 4 \Rightarrow m > \sqrt{4} \Rightarrow m > +2
    If roots are imaginary, then \Delta < 0
    \therefore m<sup>2</sup> - 4 < 0 \Rightarrow m<sup>2</sup> < 4 \Rightarrow m < \sqrt{4} \Rightarrow m < +2
ii. x^2 - mx + 9 = 0
    x^2 - mx + 9 = 0
    a = 1, b = -m, c = 9
    \Delta = b^2 - 4ac
    \Delta = (-m)^2 - 4(1)(9)
    \Delta = m^2 - 36
    If roots are equal, then \Delta = 0
   \therefore m<sup>2</sup> - 36 = 0 \Rightarrow m<sup>2</sup> = 36 \Rightarrow m = \sqrt{36} = +6
    If roots are distinct, then \Delta > 0
   \therefore m<sup>2</sup> - 36 > 0 \Rightarrow m<sup>2</sup> > 36 \Rightarrow m > \sqrt{36} \Rightarrow m > +6
```

```
If roots are imaginary, then \Delta < 0
   \therefore m<sup>2</sup> - 36 < 0 \Rightarrow m<sup>2</sup> < 36 \Rightarrow m < \sqrt{36} \Rightarrow m < \pm 6
iii. r^2 - (m + 1)r + 4 = 0
    r^{2} - (m + 1)r + 4 = 0
    a = 1, b = -(m + 1), c = 4
    \Delta = b^2 - 4ac
    \Delta = [-(m+1)]^2 - 4(1)(4)
    \Delta = (m + 1)^2 - 16
    If roots are equal, then \Delta = 0
    \therefore (m+1)^2 - 16 = 0 \Longrightarrow (m+1)^2 = 16 \Longrightarrow m+1 = \sqrt{16} = \pm 4
    m + 1 = +4
    m = \pm 4 - 1
    m = +4 - 1 or m = -4 - 1
    m = 3 \text{ or } m = -5
    If roots are distinct, then \Delta > 0
    \therefore (m+1)^2 - 16 > 0 \Longrightarrow (m+1)^2 > 16 \Longrightarrow m+1 > \sqrt{16}
    m + 1 > +4
    m > \pm 4 - 1
    m > +4 - 1 or m > -4 - 1
    m > 3 \text{ or } m > -5
    If roots are imaginary, then \Delta < 0
    \therefore (m+1)^2 - 16 < 0 \Longrightarrow (m+1)^2 < 16
     \Rightarrow m + 1 < \sqrt{16}
   m + 1 < \pm 4
   m < +4 - 1
    m < +4 - 1 or m < -4 - 1
    m < 3 \text{ or } m < -5
iv. mk^2 - 3k + 1 = 0
    mk^2 - 3k + 1 = 0
    a = m, b = -3, c = 1
    \Delta = b^2 - 4ac
    \Delta = (-3)^2 - 4(m)(1)
    \Delta = 9 - 4m
    If roots are equal, then \Delta = 0
```

 $\therefore 9 - 4m = 0 \implies 4m = 9 \implies m = \frac{9}{4}$ If roots are distinct, then $\Delta > 0$ $\therefore 9 - 4m > 0 \implies 4m > 9 \implies m > \frac{9}{4}$ If roots are imaginary, then $\Delta < 0$ $\therefore 9 - 4m < 0 \implies 4m < 9 \implies m < \frac{9}{4}$

C. Find the value of 'p' for which the quadratic equations have equal values.

i.
$$x^{2} - px + 9 = 0$$

 $x^{2} - px + 9 = 0$
 $a = 1, b = -p, c = 9$
 $\Delta = 0$
 $\Delta = b^{2} - 4ac$
 $(-p)^{2} - 4(1)(9) = 0$
 $p^{2} - 36 = 0$
 $p^{2} = 36$
 $p = \sqrt{36} = \pm 6$
ii. $2a^{2} + 3a + p$
 $2a^{2} + 3a + p$
 $a = 2, b = 3, c = p$
 $\Delta = 0$
 $b^{2} - 4ac = 0$
 $(3)^{2} - 4(2)(p) = 0$
 $9 - 8p = 0$
 $9 = 8p$
 $p = \frac{9}{8}$
 $pk^{2} - 12k + 9 = 0$
 $a = p, b = -12, c = 9$
 $\Delta = 0$
 $b^{2} - 4ac = 0$
 $(-12)^{2} - 4(p)(9) = 0$
 $144 - 36p = 0$

144 = 36p

$$p = \frac{144}{36} = 4$$
iii. $2y^2 - py + 1 = 0$
 $2y^2 - py + 1 = 0$
 $a = 2, b = -p, c = 1$
 $\Delta = 0$
 $b^2 - 4ac = 0$
 $(-p)^2 - 4(2)(1) = 0$
 $p^2 - 8 = 0$
 $p^2 = 8$
 $p = \sqrt{8} = \sqrt{4 \times 2} = \pm 2\sqrt{2}$
iv. $(p + 1)n^2 + 2(p + 3)n + (p + 8) = 0$
 $(p + 1)n^2 + 2(p + 3)n + (p + 8) = 0$
 $a = p + 1, b = 2(p + 3), c = p + 8$
 $\Delta = 0$
 $b^2 - 4ac = 0$
 $(2(p + 3))^2 - 4(p + 1)(p + 8) = 0$
 $4(p^2 + 6p + 9) - 4(p^2 + 9p + 8) = 0$
 $4p^2 + 24p + 36 - 4p^2 - 36p - 32 = 0$
 $-12p = -4$
 $12p = 4$
 $p = \frac{4}{12} = \frac{1}{3}$
v. $(3p + 1)c^2 + 2(p + 1)c + p = 0$
 $a = 3p + 1, b = 2(p + 1), c = p$
 $\Delta = 0$
 $b^2 - 4ac = 0$
 $(2(p + 1))^2 - 4(3p + 1)(p) = 0$
 $4(p^2 + 2p + 1) - 12p^2 - 4p = 0$
 $-8p^2 + 4p + 4 = 0$
 $-8p^2 + 4p + 4 = 0$

$$-4(2p^{2} - p - 1) = 0$$

$$2p^{2} - p - 1 = 0$$

$$2p^{2} - 2p + p - 1 = 0$$

$$2p(p - 1) + 1(p - 1) = 0$$

$$(p - 1)(2p + 1) = 0$$

$$(p - 1) = 0 \text{ or } (2p + 1) = 0$$

$$p = 1 \text{ or } 2p = -1 \implies p = \frac{-1}{2}$$

Exercise 9.7

Find the sum and product of the roots of the quadratic equations.

1. $x^2 - 5x + 8 = 0$ $x^2 - 5x + 8 = 0$ a = 1, b = -5, c = 8Sum of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$ Product of the roots = $\frac{c}{a} = \frac{8}{1} = 8$ 2. $3a^2 - 10a - 5 = 0$ $3a^2 - 10a - 5 = 0$ a = 3, b = -10, c = -5Sum of the roots $=\frac{-b}{a}=\frac{-(-10)}{3}=\frac{10}{3}$ Product of the roots = $\frac{c}{a} = \frac{-5}{3}$ 3. $8m^2 - m = 2$ $8m^2 - m = 2$ $8m^2 - m - 2 = 0$ a = 8, b = -1, c = -2Sum of the roots $=\frac{-b}{a}=\frac{-(-1)}{8}=\frac{1}{8}$ Product of the roots = $\frac{c}{a} = \frac{-2}{8} = \frac{-1}{4}$ 4. $6k^2 - 3 = 0$ $6k^2 - 3 = 0$ a = 6, b = 0, c = -3

Sum of the roots $= \frac{-b}{a} = \frac{0}{6} = 0$ Product of the roots $= \frac{c}{a} = \frac{-3}{6} = \frac{-1}{2}$ 5. $pr^2 = r - 5$ $pr^2 = r - 5$ $pr^2 - r + 5 = 0$ a = p, b = -1, c = 5Sum of the roots $= \frac{-b}{a} = \frac{-(-1)}{p} = \frac{1}{p}$ Product of the roots $= \frac{c}{a} = \frac{5}{p}$ 6. $x^2 + (ab)x + (a + b) = 0$ $x^2 + (ab)x + (a + b) = 0$ a = 1, b = ab, c = a + bSum of the roots $= \frac{-b}{a} = \frac{-(ab)}{1} = ab$ Product of the roots $= \frac{c}{a} = \frac{a+b}{1} = a + b$

Exercise 9.8

A. Form the equation whose roots are i. 3, 5 m = 3, n = 5 m + n = 3 + 5 = 8 mn = 3 × 5 = 15 Equation : $x^2 - (m + n)x + mn = 0 \Rightarrow x^2 - 8x + 15 = 0$ ii. 6, -5 m = 6, n = -5 m + n = 6 - 5 = 1 mn = 6 × -5 = -30 Equation : $x^2 - (m + n)x + mn = 0 \Rightarrow x^2 - x - 30 = 0$ iii. -3, $\frac{3}{2}$ m = -3, n = $\frac{3}{2}$ m + n = -3 + $\frac{3}{2} = \frac{-6+3}{2} = \frac{-3}{2}$

$$mn = -3 \times \frac{3}{2} = \frac{-9}{2}$$

Equation : $x^2 - (m + n)x + mn = 0$
 $\Rightarrow x^2 - \left(\frac{-3}{2}\right)x + \left(\frac{-9}{2}\right) = 0$
 $\Rightarrow x^2 + \frac{3}{2}x - 9 = 0$
iv. $m = \frac{2}{3}, n = \frac{3}{2}$
 $m + n = \frac{2}{3} + \frac{3}{2} = \frac{4+9}{6} = \frac{13}{6}$
 $mn = \frac{2}{3} \times \frac{3}{2} = \frac{6}{6} = 1$
Equation : $x^2 - (m + n)x + mn = 0$
 $\Rightarrow x^2 - \frac{13}{2}x + 1 = 0$
 $\Rightarrow 6x^2 - 13x + 6 = 0$
 $2 + \sqrt{3}, 2 - \sqrt{3}$
 $m = 2 + \sqrt{3}, n = 2 - \sqrt{3}$
 $m + n = 2 + \sqrt{3} + 2 - \sqrt{3} = 4$
 $mn = (2 + \sqrt{3})(2 - \sqrt{3}) = 2^2 - (\sqrt{3})^2 = 4 - 3 = 1$
Equation : $x^2 - (m + n)x + mn = 0 \Rightarrow x^2 - 4x + 1 = 0$
v. $-3 + 2\sqrt{5}, -3 - 2\sqrt{5}$
 $m = -3 + 2\sqrt{5}, n = -3 - 2\sqrt{5} = -6$
 $mn = (-3 + 2\sqrt{5})(-3 - 2\sqrt{5}) = (-3)^2 - (2\sqrt{5})^2 = 9 - 20 = -11$
Equation : $x^2 - (m + n)x + mn = 0 \Rightarrow x^2 - (-6)x - 11 = 0$
 $\Rightarrow x^2 + 6x - 11 = 0$

B. 1 .If 'm' and 'n' are the roots of the equation $x^2 - 6x + 2 = 0$ find the value of (i) (m + n)mn (ii) $\frac{1}{m} + \frac{1}{n}$ (iii) $m^3n^2 + n^3m^2$ (iv)

 $\frac{1}{n}-\frac{1}{m}$ $x^2 - 6x + 2 = 0$ $(m-n)^2 = m^2 + n^2 - 2mn$ a = 1, b = -6, c = 2 $(m-n)^2 = (m+n)^2 - 2mm - 2mn$ $(m-n)^2 = (m+n)^2 - 4mn$ Sum of the roots : $m + n = \frac{-b}{a} = \frac{-(-6)}{1} = 6$ $(m-n)^2 = (6)^2 - 4(2)$ Product of the roots : $mn = \frac{c}{a} = \frac{2}{1} = 2$ $(m-n)^2 = 36 - 8$ i. $(m + n)mn = 6 \times 2 = 12$ $(m-n)^2 = 28$ ii. $\frac{1}{m} + \frac{1}{n} = \frac{m+n}{mn} = \frac{6}{2} = 3$ $m - n = \sqrt{28} = \sqrt{4 \times 7} = \pm 2\sqrt{7}$ $\lim_{m \to 1} m^{2} n^{2} + n^{3}m^{2} = m^{2}n^{2}(m+n)$ $= (mn)^2(m + n) = 2^2 \times 6 = 24$ iv. $\frac{1}{n} - \frac{1}{m} = \frac{m-n}{mn} = \frac{\pm 2\sqrt{7}}{2} = \pm \sqrt{7}$

2. If 'a' and 'b' are the roots of the equation $3m^2 = 6m + 5$ find the value of

(i)
$$\frac{a}{b} + \frac{b}{a}$$
 (ii) $(a + 2b)(2a + b)$
 $3m^2 = 6m + 5$
 $3m^2 - 6m - 5 = 0$
 $a = 3, b = -6, c = -5$
Sum of the roots : $a + b = \frac{-b}{a} = \frac{-(-6)}{3} = 2$
Product of the roots : $ab = \frac{c}{a} = \frac{-5}{3}$

i.
$$\frac{a}{b} + \frac{b}{a} = \frac{a^2 + b^2}{ab}$$

= $\frac{(a+b)^2 - 2ab}{ab}$
= $\frac{(2)^2 - 2\left(\frac{-5}{3}\right)}{\frac{-5}{3}}$

$$= \frac{4 + \frac{10}{3}}{\frac{-5}{3}}$$
$$= \frac{\frac{12 + 10}{3}}{\frac{-5}{3}} = \frac{\frac{22}{3}}{\frac{-5}{3}} = \frac{22}{3} \times \frac{3}{-5} = -\frac{22}{5}$$

ii.
$$(a + 2b)(2a + b)$$

 $= 2a^{2} + 4ab + ab + 2b^{2}$
 $= 2a^{2} + 2b^{2} + 5ab$
 $= 2(a^{2} + b^{2}) + 5ab$
 $= 2[(a + b)^{2} - 2ab] + 5ab$
 $= 2[(2)^{2} - 2(\frac{-5}{3})] + 5(\frac{-5}{3})$
 $= 2[4 + \frac{10}{3}] - \frac{25}{3}$
 $= 2[\frac{12+10}{3}] - \frac{25}{3}$
 $= 2[\frac{22}{3}] - \frac{25}{3}$
 $= \frac{44}{3} - \frac{25}{3}$
 $= \frac{44-25}{3}$
 $= \frac{19}{3}$

3. If 'p' and 'q' are the roots of the equation 2a² - 4a + 1 = 0 find the value of
(i) (p + q)² + 4pq (ii) p³ + q³
2a² - 4a + 1 = 0
a = 2, b = -4, c = 1

Sum of the roots : $p + q = \frac{-b}{a} = \frac{-(-4)}{2} = 2$ Product of the roots : $pq = \frac{c}{a} = \frac{1}{2}$ i. $(p+q)^2 + 4pq = 2^2 + 4\left(\frac{1}{2}\right) = 4 + 2 = 6$ ii. $p^3 + q^3 = (p+q)^3 - 3pq(p+q)$

$$= 2^{3} - 3\left(\frac{1}{2}\right)(2)$$
$$= 8 - 3 = 5$$

4. Form a quadratic equation whose roots are $\frac{p}{q}$ and $\frac{q}{p}$

$$m = \frac{p}{q}, n = \frac{q}{p}$$

$$m + n = \frac{p}{q} + \frac{q}{p} = \frac{p^2 + q^2}{pq}$$

$$mn = \frac{p}{q} \times \frac{q}{p} = \frac{pq}{pq} = 1$$
Equation : $x^2 - (m + n)x + mn = 0 \Rightarrow x^2 - \left(\frac{p^2 + q^2}{pq}\right)x + 1 = 0$

$$\Rightarrow pqx^2 - (p^2 + q^2)x + pq = 0$$

- 5. Find the value of 'k' so that the equation $x^2 + 4x + (k + 2) = 0$ has one root equal to zero $x^2 + 4x + (k + 2) = 0$ a = 1, b = 4, c = k + 2product of the roots : mn $= \frac{c}{a} \Rightarrow m \times 0 = \frac{k+2}{1}$ $\Rightarrow k+2 = 0 \Rightarrow k = -2$
- 6. Find the value of 'q' so that the equation $2x^2 3qx + 5q = 0$ has one root which is twice other.

$$2x^{2} - 3qx + 5q = 0$$

$$a = 2, b = -3q, c = 5q$$

Sum of the roots : $m + n = \frac{-b}{a}$

$$\Rightarrow m + 2m = \frac{-(-3q)}{2}$$

$$\Rightarrow 3m = \frac{3q}{2}$$

$$\Rightarrow m = \frac{3q}{6} = \frac{q}{2}$$

Product of the roots : $mn = \frac{c}{a}$

$$\Rightarrow m(2m) = \frac{5q}{2}$$
$$\Rightarrow \left(\frac{q}{2}\right)(2 \times \frac{q}{2}) = \frac{5q}{2} \Rightarrow q = 5$$

- 7. Find the value of 'p' so that the equation $4x^2 8px + 9 = 0$ has roots whose difference is 4 $4x^2 - 8px + 9 = 0$ a = 4, b = -8p, c = 9Sum of the roots : $m + n = \frac{-b}{a}$ \Rightarrow m + m + 4 = $\frac{-(-8p)}{4}$ [n = m + 4] \Rightarrow 2m + 4 = 2p $\Rightarrow 2(m+2) = 2p$ \Rightarrow m + 2 = p \Rightarrow m = p - 2 Product of the roots : $mn = \frac{c}{a}$ $\Rightarrow (p-2)(p-2+4) = \frac{9}{4}$ $\implies (p-2)(p+2) = \frac{9}{4}$ $\Rightarrow p^2 - 4 = \frac{9}{4}$ $\Rightarrow p^2 = \frac{9}{4} + 4$ \Rightarrow p = $\sqrt{\frac{25}{4}} = \pm \frac{5}{2}$
- 8. If one root of the equation $x^2 + px + q = 0$ is 3 times the other prove that $3p^2 = 16q$ $x^2 + px + q = 0$ a = 1, b = p, c = qSum of the roots : $m + n = \frac{-b}{a}$ $\Rightarrow m + 3m = \frac{-p}{1}$ [n = 3m] $\Rightarrow 4m = -p$

$$\Rightarrow m = \frac{-p}{4}$$

Product of the roots : $mn = \frac{c}{a}$
$$\Rightarrow m(3m) = \frac{q}{1}$$

$$\Rightarrow \left(\frac{-p}{4}\right) \left(3 \times \frac{-p}{4}\right) = q$$

$$\Rightarrow \frac{3p^2}{16} = q$$

$$\Rightarrow 3p^2 = 16q$$

Exercise 9.9

I. Draw the graphs of the following quadratic equations :

	i. y	$= -x^{2}$	2 2						
X	y 0	$= -x^{2}$	-1	2	-2	3	-3	4	-4
у	0	-1	-1	-4	-4	-9	-9	-16	-16

ii.
$$y = 3x^2$$

- I. Draw the graph of the following equations.
 - i. $y = x^2$ Sol: $y = -x^2$

		<u> </u>							
x	0	1	-1	2	-2	3	-3	4	-4
У	0	1	1	4	4	9	9	16	16

J = (-1, 3) = (1, 3)

3x² ⊬= (0, 0)

 $\mathbf{Y}^{0}\mathbf{Y}^{1}$

-4

-2

 X^{1-11} -10

-8

-6

10

¹² **X**¹³

Exercise 9.11

- 1. Find two consecutive positive odd numbers such that the sum of their squares is equal to 130 Let the two consecutive positive odd numbers : x and x + 2 $\Rightarrow x^2 + (x + 2)^2 = 130$ $\Rightarrow x^2 + x^2 + 4x + 4 = 130$ $\Rightarrow 2x^2 + 4x + 4 - 130 = 0$ $\Rightarrow 2x^2 + 4x - 126 = 0$ $\Rightarrow 2(x^2 + 2x - 63) = 0$ $\Rightarrow x^2 + 2x - 63 = 0$ $\Rightarrow x^2 + 9x - 7x - 63 = 0$ $\Rightarrow x(x + 9) - 7(x + 9) = 0$ $\Rightarrow (x + 9)(x - 7) = 0$ $\Rightarrow (x + 9) = 0 \text{ or } (x - 7) = 0$ $\Rightarrow x = -9 \text{ (negative) or } x = 7$ \therefore The two consecutive positive add numbers : 7,9
- 2. Find the whole number such that four times the number subtracted from three times the square of the number makes 15 Let the whole number be x ⇒ $3x^2 - 4x = 15$ ⇒ $3x^2 - 4x - 15 = 0$ ⇒ $3x^2 - 9x + 5x - 15 = 0$ ⇒ 3x(x - 3) + 5(x - 3) = 0⇒ (x - 3)(3x + 5) = 0⇒ (x - 3) = 0 or (3x + 5) = 0⇒ x = 3 or 3x = -5⇒ x = 3 or $x = \frac{-5}{3}$ (negative) ∴ whole number = 3
- 3. The sum of two natural numbers is 8. Determine the numbers, if the sum of their reciprocals is $\frac{8}{15}$

Two natural numbers : x, 8 - x $\Rightarrow \frac{1}{x} + \frac{1}{8-x} = \frac{8}{15}$ $\Rightarrow \frac{8-x+x}{x(8-x)} = \frac{8}{15}$ $\Rightarrow \frac{8}{8x-x^2} = \frac{8}{15}$ $\Rightarrow 8(8x-x^2) = 8 \times 15$ $\Rightarrow 64x - 8x^2 = 120$ $\Rightarrow 8x^2 - 64x + 120 = 0$ $\Rightarrow 8(x^2 - 8x + 15) = 0$ $\Rightarrow x^2 - 8x + 15 = 0$ $\Rightarrow x^2 - 5x - 3x + 15 = 0$ $\Rightarrow x(x-5) - 3(x-5) = 0$ $\Rightarrow (x-5)(x-3) = 0$ $\Rightarrow (x-5) = 0 \text{ or } (x-3) = 0$ $\Rightarrow x = 5 \text{ or } x = 3$

 $\Rightarrow x = 5 \text{ or } x = 3$ $\therefore 2 \text{ natural numbers} : 5,3$

 A two digit number is such that the product of the digits is 12. When 36 is added this number the digits interchange their places. Determine the number.

Tenth place : x Unit place : $\frac{12}{x}$ two digit number = $10x + \frac{12}{x}$ $\Rightarrow 10x + \frac{12}{x} + 36 = 10 \times \frac{12}{x} + x$ $\Rightarrow \frac{10x^2 + 12 + 36x}{x} = \frac{120}{x} + x$ $\Rightarrow \frac{10x^2 + 12 + 36x}{x} = \frac{120 + x^2}{x}$ $\Rightarrow 10x^2 + 12 + 36x = 120 + x^2$ $\Rightarrow 10x^2 + 12 + 36x - 120 - x^2 = 0$ $\Rightarrow 9x^2 + 36x - 108 = 0$ $\Rightarrow 9(x^2 + 4x - 12) = 0$ $\Rightarrow x^2 + 4x - 12 = 0$ $\Rightarrow x^2 + 6x - 2x - 12 = 0$ $\Rightarrow x(x + 6) - 2(x + 6) = 0$

 $\Rightarrow (x+6) = 0 \text{ or } (x-2) = 0$ $\Rightarrow x = -6 \text{ (negative) or } x = 2$ $\therefore 2 \text{ digit number} : 26$

- 5. Find three consecutive positive integers such that the sum of the square of the first and the product of other two is 154 Sol : Three consecutive positive numbers : x, x + 1, x + 2 $\Rightarrow x^2 + (x + 1)(x + 2) = 154$ $\Rightarrow x^2 + x^2 + 3x + 2 = 154$ $\Rightarrow 2x^2 + 3x + 2 - 154 = 0$ $\Rightarrow 2x^2 + 3x - 152 = 0$ $\Rightarrow 2x^2 + 19x - 16x - 152 = 0$ $\Rightarrow x(2x + 19) - 8(2x + 19) = 0$ $\Rightarrow (2x + 19)(x - 8) = 0$ $\Rightarrow (2x + 19) = 0 \text{ or } (x - 8) = 0$ $\Rightarrow 2x = -19 \Rightarrow x = \frac{-19}{2}$ (negative)or x = 8 \therefore Three consecutive positive numbers : 8,9,10
- 6. The ages of Kavya and Karthik are 11 years and 14 years. In how many years time will the product of their ages be 304 Sol : Let the years : x \Rightarrow (x + 11)(x + 14) = 304 \Rightarrow x² + 25x + 154 - 304 = 0 \Rightarrow x² + 25x - 150 = 0 \Rightarrow x² + 30x - 5x - 150 = 0 \Rightarrow x(x + 30) - 5(x + 30) = 0 \Rightarrow (x + 30)(x - 5) = 0 \Rightarrow (x + 30) = 0 or (x - 5) = 0 \Rightarrow x = -30 (negative)or x = 5 \therefore After 5 years the product of their ages be 304
- 7. The age of a man is twice the square of the age of his son. Eight years hence, the age of the man will be 4 years more than three times the age of his son. Find their present age

Age	Son	Father
Present	Х	$2x^2$
After 8 years	x + 8	$2x^2 + 8$

 $2x^{2} + 8 = 3(x + 8) + 4$ $\Rightarrow 2x^{2} + 8 = 3x + 28$ $\Rightarrow 2x^{2} + 8 - 3x - 28 = 0$ $\Rightarrow 2x^{2} - 3x - 20 = 0$ $\Rightarrow 2x^{2} - 8x + 5x - 20 = 0$ $\Rightarrow 2x(x - 4) + 5(x - 4) = 0$ $\Rightarrow (x - 4)(2x - 5) = 0$ $\Rightarrow (x - 4) = 0 \text{ or } (2x - 5) = 0$ $\Rightarrow x = 4 \text{ or } 2x = -5 \Rightarrow x = \frac{-5}{2} \text{ (negative)}$ $\therefore \text{ Age of son : 4 years, Father : 32 years}$

8. The area of a rectangle is 56 cm^2 . If the measure of its base is represented by x + 5 and the measure of its height by x - 5, find the dimensions of the rectangle.

$$Area = 56cm^2$$

$$x - 5$$

base × height = area of the rectangle $\Rightarrow (x + 5)(x - 5) = 56$ $\Rightarrow x^{2} - 5^{2} = 56$ $\Rightarrow x^{2} - 25 = 56$ $\Rightarrow x^{2} = 56 + 25$ $\Rightarrow x^{2} = 81$ $\Rightarrow x = \sqrt{81} = 9$ $\therefore \text{ Dimensions of the rectangle} : 14 \text{ cm and } 4 \text{ cm}$

9. The altitude of a triangle is 6 cm greater than its base. If its area is 108 cm^2 . Find its base.

 $\Rightarrow \frac{1}{2} \times x \times (x+6) = 108$ $\Rightarrow x^{2} + 6x = 216$ $\Rightarrow x^{2} + 6x - 216 = 0$ $\Rightarrow x^{2} + 18x - 12x - 216 = 0$ $\Rightarrow x(x+18) - 12(x+18) = 0$ $\Rightarrow (x+18)(x-12) = 0$ $\Rightarrow (x+18) = 0 \text{ or } (x-12) = 0$ $\Rightarrow x = -18 \text{ or } x = 12$ $\therefore \text{ Base} = 12\text{ cm}$

 $\frac{1}{2}$ × base × height = Area of a triangle

10. In rhombus, the diagonals AC and BD intersect at E. If AE = x, BE = x + 7 and AB = x + 8, find the diagonals AC and BD In **ABC** $AB^2 = AE^2 + BE^2$ [: pytagorus theorum] $\Rightarrow (x + 8)^2 = x^2 + (x + 7)^2$ x+8*x* = $\Rightarrow x^{2} + 16x + 64 = x^{2} + x^{2} + 14x + 49$ 90 $\Rightarrow x^{2} + 16x + 64 = 2x^{2} + 14x + 49$ x + 7 $\Rightarrow 2x^{2} + 14x + 49 - x^{2} - 16x - 64 = 0$ \Rightarrow x² - 2x - 15 = 0 \Rightarrow x² - 5x + 3x - 15 = 0 \Rightarrow x(x - 5) + 3(x - 5) = 0 \Rightarrow x(x - 5) + 3(x - 5) = 0 \Rightarrow (x - 5)(x + 3) = 0 \Rightarrow (x - 5) = 0 or (x + 3) = 0 \Rightarrow x = 5 or x = -3 (negative) AE = x = 5 cm, BE = x + 7 = 5 + 7 = 12 cm \therefore Diagonals AC = 10 cm , BD = 24 cm

11. If twice the area of smaller square is subtracted from the area of a larger square, the result is $14 \ cm^2$. However, if twice the area of the larger square is added to three times the area of the smaller square, the result is $203 \ cm^2$. Determine the sides of the two squares.

$$b^{2} - 2a^{2} = 14 \Rightarrow b^{2} = 14 + 2a^{2}$$

$$\Rightarrow 2b^{2} + 3a^{2} = 203$$

$$\Rightarrow 2(14 + 2a^{2}) + 3a^{2} = 203$$

$$\Rightarrow 28 + 4a^{2} + 3a^{2} = 203$$

$$\Rightarrow 7a^{2} = 203 - 28$$

$$\Rightarrow 7a^{2} = 175$$

$$\Rightarrow a^{2} = \frac{175}{7}$$

$$\Rightarrow a^{2} = 25$$

$$\Rightarrow a^{2} = 25$$

$$\Rightarrow a^{2} = 25$$

$$\Rightarrow b^{2} = 14 + 2(5)^{2}$$

$$\Rightarrow b^{2} = 14 + 50$$

$$\Rightarrow b^{2} = 64$$

$$\Rightarrow b = \sqrt{64} = 8$$

$$\therefore \text{ sides of squares } : 5 \text{ cm }, 8 \text{ cm}$$

- 12. In an isoceles triangle ABC, AB = BC and BD is the altitude to base AC. If DC = x, BD = 2x - 1 and BC = 2x + 1, find the lengths of all three sides of the triangle. In \triangle BDc $BC^2 = BD^2 + DC^2$ [: pytagorus theorum] $\Rightarrow (2x+1)^2 = (2x-1)^2 + x^2$ x $\Rightarrow 4x^2 + 4x + 1 = 4x^2 - 4x + 1 + x^2$ D 2x + 1 $\Rightarrow 4x = -4x + x^2$ \Rightarrow 4x + 4x = x² 90 $\Rightarrow x^2 = 8x$ $\Rightarrow x^2 - 8x = 0$ $\Rightarrow x(x-8) = 0$ \Rightarrow x = 0 or (x - 8) = 0 \Rightarrow x = 0 or x = 8 \therefore DC = 8 cm \implies AC = AD + DC = 8 + 8 = 16 cm $\therefore AB = BC = 2x + 1 = 2(8) + 1 = 17 \text{ cm}$ \therefore Diagonals AC = 10 cm , BD = 24 cm ∴ Sides of triangles : 17 cm , 17 cm , 16 cm
- 13. A motor boat whose speed is 15 km/hr in still water goes 30 km downstream and comes back in a total of 4 hours 30 minutes. Determine the speed of the stream.Speed of the stream : x km/hr

Speed of the boat in still water : 15 km/hr

	speed	time
Down stream	15 + x	$\frac{30}{15 + x}$
Up stream	15 – x	$\frac{30}{15 - x}$

 $\frac{\frac{30}{15+x} + \frac{30}{15-x}}{\frac{15-x}{15-x}} = 4 \text{ hours 30 minutes}$ $\Rightarrow \frac{30(15+x) + 30(15-x)}{(15+x)(15-x)} = 4 \frac{30}{60}$ $\Rightarrow \frac{\frac{450+30x+450-30x}{15^2-x^2}}{\frac{12}{15}} = 4 \frac{1}{2}$

$$\Rightarrow \frac{900}{225 - x^2} = \frac{9}{2}$$

$$\Rightarrow 9(225 - x^2) = 2 \times 900$$

$$\Rightarrow 225 - x^2 = \frac{2 \times 900}{9}$$

$$\Rightarrow 225 - x^2 = 200$$

$$\Rightarrow x^2 = 225 - 200$$

$$\Rightarrow x^2 = 25$$

$$\Rightarrow x = \sqrt{25} = 5$$

$$\therefore \text{ Speed of the stream : 5 km/hr}$$

- 14.A dealer sells an article for Rs 24 and gains as much percent as the cost price of the article. Find the cost price of the article. Cost price of the article : Rs x Selling price : Rs 24 Profit = 24 - x% profit = $\frac{24-x}{x} \times 100$ $x = \frac{24-x}{x} \times 100$ $x^2 = 2400 - 100x$ $x^{2} + 100x - 2400 = 0$ $x^{2} + 120x - 20x - 2400 = 0$ x(x + 120) - 20(x + 120) = 0(x + 120) (x - 20) = 0(x + 120) = 0 or (x - 20) = 0x = -120 or x = 20Cost price of the article : Rs 20
- 15.Nandana takes 6 days less than the number of days taken by Shobha to complete a piece of work. If both Nandana and Shobha together can complete the same work 4 days, in how many days will Shobha alone complete the work ?

	No of day	rs	Portion of work	
			done in one day	
Shobha	Х		1	
			X	
Nandana	x – 6		1	
			x-6	
Together	4		1	
1 1 1			4	
$\frac{1}{-+-\frac{1}{-+\frac{1}{-+\frac{1}{-+\frac{1}{-+\frac{1}{-+\frac{1}{-+\frac{1}{-+\frac{1}{-+\frac{1}{-+\frac{1}{-+\frac{1}{-+}}}}}}}}}}}}}}}}}}}}}}}}}}$				
x x - 6 4				
$\frac{x - 0 + x}{x - 0 - x} = \frac{1}{4}$				
X(X - 6) = 4 2x - 6 = 1				
$\frac{2X}{x^2} \frac{0}{6x} = \frac{1}{4}$				
$x^{2} - 6x = 4(2x - 6)$				
$x^2 - 6x = 8x - 24$				
$x^2 - 6x - 8x + 24 = 0$				
$x^2 - 14x + 24 = 0$				
$x^2 - 12x - 2x + 24 = 0$				
x(x-12) - 2(x-12) = 0				
(x - 12)(x - 2) = 0				
(x - 12)(x - 2) = 0 (x - 12) = 0 or $(x - 2) = 0$				
x = 12 or x = 2				
A = 12 or A = 2 But together they take 4 days. So one cannot complete the				
work in two days				
· Shahha takas 12 days				
·· SHUDHA LAKES 12 UAYS.				

16.A particle is projected from ground level so that its height above the ground after t is given by $(20t - 5t^2)m$. After how many seconds is it 15 m above the ground. Can you explain briefly why are two possible answers ?

 $20t - 5t^2 = 15$

Time (seconds)	Height (metres)
t	$20t - 5t^2$
?	15

 $5t^{2} - 20t + 15 = 0$ $5(t^{2} - 4t + 3) = 0$ $t^{2} - 4t + 3 = 0$ $t^{2} - 3t - t + 3 = 0$ t(t - 3) - 1(t - 3) = 0 (t - 3)(t - 1) = 0 (t - 3) = 0 or (t - 1) = 0 t = 3 or t = 1 $20t - 5t^{2} = 15 \longrightarrow \text{ It is a quadratic equation. it has two roots.}$